where the rank-4 tensor $I_\Pi=I_\Pi(\varepsilon^D(\mathbf u^{i-1}))$ given by
@f{align}
I_\Pi = \begin{cases}
- C_{\mu} + C_{\kappa}, & \hspace{-8em}\hfill \text{if } \vert C\varepsilon^D(\mathbf u^{i-1}) \vert \leq \sigma_0,
+ C_{\mu} + C_{\kappa}, & \hspace{-8em} \text{if } \vert C\varepsilon^D(\mathbf u^{i-1}) \vert \leq \sigma_0,
\\
\frac{\gamma^{\text{iso}}}{2\mu + \gamma^{\text{iso}}} C_{\mu} + \frac{\left(1-\frac{\gamma^{\text{iso}}}{2\mu + \gamma^{\text{iso}}}\right)\sigma_0}{\vert C\varepsilon^D(\mathbf u^{i-1}) \vert}\left(C_{\mu} -
2\mu\dfrac{C\varepsilon^D(\mathbf u^{i-1})\otimes C\varepsilon^D(\mathbf
from the undisplaced configuration of the body.
<li> If $\mathcal{A}_{i+1} = \mathcal{A}_k$ and $\left\|
- {\hat R}\left({\mathbf u}^{i}\right)\right) \right\|_{\ell_2} < \delta$ then stop, else set $i=i+1$ and go to
+ {\hat R}\left({\mathbf u}^{i}\right) \right\|_{\ell_2} < \delta$ then stop, else set $i=i+1$ and go to
step (1). This step ensures that we only stop iterations if both the correct
active set has been found and the plasticity has been iterated to sufficient
accuracy.