]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Some more
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 6 Nov 2006 04:50:48 +0000 (04:50 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 6 Nov 2006 04:50:48 +0000 (04:50 +0000)
git-svn-id: https://svn.dealii.org/trunk@14158 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-25/step-25.cc

index c59d449278732a7dd00a1b834338aa43bebbeb08..df793e2d3214bd95212b1a653cc8620f6b2ec4a2 100644 (file)
@@ -1,4 +1,4 @@
-/*    $Id: $.                  */
+/*    $Id:$.                  */
 /*    Copyright (C) 2006 by the deal.II authors */
 /*    Author: Ivan Christov, Wolfgang Bangerth, Texas A&M University, 2006 */
 /*                                                                */
@@ -59,19 +59,16 @@ using namespace dealii;
 
                                 // @sect3{The <code>SineGordonProblem</code> class template}
 
-                                // The entire algorithm for solving
-                                // the problem is encapsulated in
-                                // this class. Also, note that the
-                                // class is declared with a template
-                                // parameter, which is the spatial
-                                // dimension, so that we can solve
-                                // the sine-Gordon equation in one,
-                                // two or three spatial
-                                // dimension. For more on the
-                                // dimension-independent
-                                // class-encapsulation of the
-                                // problem, the reader should consult
-                                // step-3 and step-4.
+                                // The entire algorithm for solving the
+                                // problem is encapsulated in this class. As
+                                // in previous example programs, the class is
+                                // declared with a template parameter, which
+                                // is the spatial dimension, so that we can
+                                // solve the sine-Gordon equation in one, two
+                                // or three spatial dimensions. For more on
+                                // the dimension-independent
+                                // class-encapsulation of the problem, the
+                                // reader should consult step-3 and step-4.
 //TODO
 template <int dim>
 class SineGordonProblem 
@@ -622,6 +619,13 @@ void SineGordonProblem<dim>::compute_nl_matrix (const Vector<double> &old_data,
                                 // starting point actually hurts and
                                 // increases the number of iterations needed,
                                 // so we simply set it to zero.
+                                //
+                                // The function returns the number of
+                                // iterations it took to converge to a
+                                // solution. This number will later be used
+                                // to generate output on the screen showing
+                                // how many iterations were needed in each
+                                // nonlinear iteration.
 template <int dim>
 unsigned int
 SineGordonProblem<dim>::solve () 
@@ -642,15 +646,10 @@ SineGordonProblem<dim>::solve ()
 
                                 // @sect4{SineGordonProblem::output_results}
 
-                                // This function outputs the results
-                                // to a file. It is almost identical
-                                // to its counterpart in step-3 (and
-                                // step-4). The only new thing is
-                                // that the function now takes a
-                                // parameter --- the time step number
-                                // --- so that it can append it to
-                                // the name of the file, which the
-                                // current solution is output to.
+                                // This function outputs the results to a
+                                // file. It is pretty much identical to the
+                                // respective functions in step-23 and
+                                // step-24:
 template <int dim>
 void SineGordonProblem<dim>::output_results (const unsigned int timestep_number)
 {
@@ -679,49 +678,37 @@ void SineGordonProblem<dim>::output_results (const unsigned int timestep_number)
 template <int dim>
 void SineGordonProblem<dim>::run () 
 {
-  std::cout << "Solving problem in " << dim << " space dimensions." 
-           << std::endl;
-  
   make_grid_and_dofs ();
 
-                                  // To aknowledge the initial
-                                  // condition, we must use the
-                                  // function $u_0(x)$ to compute the
-                                  // zeroth time step solution
-                                  // $U^0$. Note that when we create
-                                  // the <code>InitialValues</code>
-                                  // <code>Function</code> object, we
-                                  // set its internal time variable
-                                  // to $t_0$, in case our initial
-                                  // condition is a function of space
-                                  // and time evaluated at $t=t_0$.
-  InitialValues<dim> initial_condition (1, time);
-
-                                  // Then, in 2D and 3D, we produce
-                                  // $U^0$ by projecting $u_0(x)$
-                                  // onto the grid using
-                                  // <code>VectorTools::project</code>. In
-                                  // 1D, however, we obtain the
-                                  // zeroth time step solution by
-                                  // interpolating $u_0(x)$ at the
-                                  // global degrees of freedom using
-                                  // <code>VectorTools::interpolate</code>. We
-                                  // must make an exception for the
-                                  // 1D case because the projection
-                                  // algorithm computes integrals
-                                  // over the boundary of the domain,
-                                  // which do not make sense in 1D,
-                                  // so we cannot use it.
-  if (dim == 1) 
-    {
-      VectorTools::interpolate (dof_handler, initial_condition, solution);
-    }
-  else 
+                                  // To aknowledge the initial condition, we
+                                  // must use the function $u_0(x)$. To this
+                                  // end, below we will create an object of
+                                  // type <code>InitialValues</code>; ote
+                                  // that when we create this object (which
+                                  // is derived from the
+                                  // <code>Function</code> class), we set its
+                                  // internal time variable to $t_0$, to
+                                  // indicate that the initial condition is a
+                                  // function of space and time evaluated at
+                                  // $t=t_0$.
+                                  //
+                                  // Then we produce $U^0$ by projecting
+                                  // $u_0(x)$ onto the grid using
+                                  // <code>VectorTools::project</code>. We
+                                  // have to use the same construct using
+                                  // hanging node constraints as in step-21:
+                                  // the VectorTools::project function
+                                  // requires a hanging node constraints
+                                  // object, but to be used we first need to
+                                  // close it:
     {
       ConstraintMatrix constraints;
       constraints.close();
-      VectorTools::project (dof_handler, constraints, QGauss<dim>(3),
-                           initial_condition, solution);
+      VectorTools::project (dof_handler,
+                           constraints,
+                           QGauss<dim>(3),
+                           InitialValues<dim> (1, time),
+                           solution);
     }
 
                                   // For completeness, we output the
@@ -748,19 +735,25 @@ void SineGordonProblem<dim>::run ()
                << "advancing to t = " << time << "." 
                << std::endl;
 
-                                      // First we must solve the
-                                      // nonlinear equation in the
-                                      // split formulation via
-                                      // Newton's method ---
-                                      // i.e. solve for $\delta
-                                      // U^n_l$ then compute
-                                      // $U^n_{l+1}$ and so on. The
-                                      // stopping criterion is that
-                                      // $\|F_h(U^n_l)\|_2 \le
-                                      // 10^{-6}
-                                      // \|F_h(U^n_0)\|_2$. When the
-                                      // loop below is done, we have
-                                      // (an approximation of) $U^n$.
+                                      // The first step in each time step is
+                                      // that we must solve the nonlinear
+                                      // equation in the split formulation
+                                      // via Newton's method --- i.e. solve
+                                      // for $\delta U^n_l$ then compute
+                                      // $U^n_{l+1}$ and so on. As stopping
+                                      // criterion for this nonlinear
+                                      // iteration we choose that
+                                      // $\|F_h(U^n_l)\|_2 \le 10^{-6}
+                                      // \|F_h(U^n_0)\|_2$. To this end, we
+                                      // need to record the norm of the
+                                      // residual in the first
+                                      // iteration.
+                                      //
+                                      // At the end of each iteration, we
+                                      // output to the console how many
+                                      // linear solver iterations it took
+                                      // us. When the loop below is done, we
+                                      // have (an approximation of) $U^n$.
       double initial_rhs_norm = 0.;
       bool first_iteration = true;
       do 
@@ -786,25 +779,6 @@ void SineGordonProblem<dim>::run ()
       std::cout << " CG iterations per nonlinear step."
                << std::endl;
       
-                                      // In the case of the explicit
-                                      // Euler time stepping scheme,
-                                      // we must pick the time step
-                                      // to be quite small in order
-                                      // for the scheme to be
-                                      // stable. Therefore, there are
-                                      // a lot of time steps during
-                                      // which "nothing interesting
-                                      // happens" in the solution. To
-                                      // improve overall efficiency
-                                      // --- in particular, speed up
-                                      // the program and save disk
-                                      // space --- we only output the
-                                      // solution after
-                                      // <code>output_timestep_skip</code>
-                                      // time steps have been taken.
-      if (timestep_number % output_timestep_skip == 0)
-       output_results (timestep_number);
-      
                                       // Upon obtaining the solution to the
                                       // first equation of the problem at
                                       // $t=t_n$, we must update the
@@ -813,9 +787,7 @@ void SineGordonProblem<dim>::run ()
                                       // and store $V^n$ since it is not a
                                       // quantity we use directly in the
                                       // problem. Hence, for simplicity, we
-                                      // update $MV^n$ directly using the
-                                      // second equation in the last
-                                      // subsection of the Introduction.
+                                      // update $MV^n$ directly:
       Vector<double> tmp_vector (solution.size());
       laplace_matrix.vmult (tmp_vector, solution);
       massmatxvel.add (-time_step*theta, tmp_vector);
@@ -827,6 +799,21 @@ void SineGordonProblem<dim>::run ()
       tmp_vector = 0;
       compute_nl_term (old_solution, solution, tmp_vector);
       massmatxvel.add (-time_step, tmp_vector);
+
+                                      // Oftentimes, in particular for fine
+                                      // meshes, we must pick the time step
+                                      // to be quite small in order for the
+                                      // scheme to be stable. Therefore,
+                                      // there are a lot of time steps during
+                                      // which "nothing interesting happens"
+                                      // in the solution. To improve overall
+                                      // efficiency --- in particular, speed
+                                      // up the program and save disk space
+                                      // --- we only output the solution
+                                      // every
+                                      // <code>output_timestep_skip</code>:
+      if (timestep_number % output_timestep_skip == 0)
+       output_results (timestep_number);      
     }
 }
 
@@ -853,7 +840,7 @@ int main ()
     {
       deallog.depth_console (0);
 
-      SineGordonProblem<2> sg_problem;
+      SineGordonProblem<1> sg_problem;
       sg_problem.run ();
     }
   catch (std::exception &exc)

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.