*
* <h4>Determining the correct basis</h4>
*
- * In most cases, the set of desired node values <i>N<sub>i</sub></i>
- * and the basis functions <i>v<sub>j</sub></i> will not fulfil the
- * interpolation condition <i>N<sub>i</sub>(v<sub>j</sub>) =
- * δ<sub>ij</sub></i>.
+ * In most cases, the set of desired node values $N_i$ and the basis
+ * functions $v_j$ will not fulfil the interpolation condition
+ * $N_i(v_j) = \delta_{ij}$.
*
* The use of the membaer data #inverse_node_matrix allows to compute
- * the basis <i>v<sub>j</sub></i> automatically, after the node values
+ * the basis $v_j$ automatically, after the node values
* for ech original basis function of the polynomial space have been
* computed.
*
* <dt>@anchor GlossNodes Node values or node functionals</dt>
*
* <dd>It is customary to define a FiniteElement as a pair consisting
- * of a local function space and a set of node values
- * <i>(N<sub>i</sub>)</i> on the mesh cells (usually defined on the
- * @ref GlossReferenceCell "reference cell"). Then, the basis of the local
- * function space is chosen such that <i>N<sub>i</sub>(v<sub>j</sub>)
- * = δ<sub>ij</sub></i>, the Kronecker delta.
+ * of a local function space and a set of node values $N_i$ on the
+ * mesh cells (usually defined on the @ref GlossReferenceCell
+ * "reference cell"). Then, the basis of the local function space is
+ * chosen such that $N_i(v_j) = \delta_{ij}$, the Kronecker delta.
*
* This splitting has several advantages, concerning analysis as well
* as implementation. For the analysis, it means that conformity with
* <dt>@anchor GlossShape Shape functions</dt> <dd>The restriction of
* the finite element basis functions to a single grid cell.</dd>
*
- * <dt>@anchor GlossSupport Support points</dt>
- * <dd>Support points are by definition those points <i>p<sub>i</sub></i>,
- * such that for the shape functions <i>v<sub>j</sub></i> holds
- * <i>v<sub>j</sub>(p<sub>i</sub>) = δ<sub>ij</sub></i>. Therefore, a
- * finite element interpolation can be defined uniquely by the values in the
- * support points.
+ * <dt>@anchor GlossSupport Support points</dt> <dd>Support points are
+ * by definition those points $p_i$, such that for the shape functions
+ * $v_j$ holds $v_j(p_i) = \delta_{ij}$. Therefore, a finite element
+ * interpolation can be defined uniquely by the values in the support
+ * points.
*
* Lagrangian elements fill the vector accessed by
* FiniteElementBase::get_unit_support_points(), such that the