]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Implement two more matrix-matrix multiplications: the case when B is transposed.
authorkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 31 Aug 2009 13:04:05 +0000 (13:04 +0000)
committerkronbichler <kronbichler@0785d39b-7218-0410-832d-ea1e28bc413d>
Mon, 31 Aug 2009 13:04:05 +0000 (13:04 +0000)
git-svn-id: https://svn.dealii.org/trunk@19352 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/lac/include/lac/full_matrix.h
deal.II/lac/include/lac/full_matrix.templates.h
deal.II/lac/include/lac/lapack_full_matrix.h
deal.II/lac/source/full_matrix.inst.in

index 330c925fc8039000f7d7d7936aace6d98fedb09d..1d4f113acf6be7f80e6ed3091733407427463008 100644 (file)
@@ -1030,7 +1030,7 @@ class FullMatrix : public Table<2,number>
 //@}
 ///@name Multiplications
 //@{
-    
+
                                     /**
                                      * Matrix-matrix-multiplication.
                                      *
@@ -1093,6 +1093,71 @@ class FullMatrix : public Table<2,number>
     void Tmmult (FullMatrix<number2>       &C,
                 const FullMatrix<number2> &B,
                 const bool                 adding=false) const;
+
+                                    /**
+                                     * Matrix-matrix-multiplication using
+                                     * transpose of <tt>B</tt>.
+                                     *
+                                     * The optional parameter
+                                     * <tt>adding</tt> determines, whether the
+                                     * result is stored in <tt>C</tt> or added
+                                     * to <tt>C</tt>.
+                                     *
+                                     * if (adding)
+                                     *  <i>C += A*B<sup>T</sup></i>
+                                     *
+                                     * if (!adding)
+                                     *  <i>C = A*B<sup>T</sup></i>
+                                     *
+                                     * Assumes that <tt>A</tt> and
+                                     * <tt>B</tt> have compatible sizes and
+                                     * that <tt>C</tt> already has the
+                                     * right size.
+                                     *
+                                     * This function uses the BLAS function
+                                     * Xgemm if the calling matrix has more
+                                     * than 15 rows and BLAS was detected
+                                     * during configuration. Using BLAS
+                                     * usually results in considerable
+                                     * performance gains.
+                                     */
+    template<typename number2>
+    void mTmult (FullMatrix<number2>       &C,
+                const FullMatrix<number2> &B,
+                const bool                 adding=false) const;
+    
+                                    /**
+                                     * Matrix-matrix-multiplication using
+                                     * transpose of <tt>this</tt> and
+                                     * <tt>B</tt>.
+                                     *
+                                     * The optional parameter
+                                     * <tt>adding</tt> determines, whether the
+                                     * result is stored in <tt>C</tt> or added
+                                     * to <tt>C</tt>.
+                                     *
+                                     * if (adding)
+                                     *  <i>C += A<sup>T</sup>*B<sup>T</sup></i>
+                                     *
+                                     * if (!adding)
+                                     *  <i>C = A<sup>T</sup>*B<sup>T</sup></i>
+                                     *
+                                     * Assumes that <tt>A</tt> and
+                                     * <tt>B</tt> have compatible
+                                     * sizes and that <tt>C</tt>
+                                     * already has the right size.
+                                     *
+                                     * This function uses the BLAS function
+                                     * Xgemm if the calling matrix has more
+                                     * than 15 columns and BLAS was
+                                     * detected during configuration. Using
+                                     * BLAS usually results in considerable
+                                     * performance gains.
+                                     */
+    template<typename number2>
+    void TmTmult (FullMatrix<number2>       &C,
+                 const FullMatrix<number2> &B,
+                 const bool                 adding=false) const;
     
                                     /**
                                      * Matrix-vector-multiplication.
index dd19a5aa89a1b0dbac052fd9c5632c3a5aef1029..337579545b5dd0d6eabf11dec6091fe5d4372ce4 100644 (file)
@@ -582,7 +582,7 @@ void FullMatrix<number>::mmult (FullMatrix<number2>       &dst,
        types_are_equal<number,float>::value)
       &&
       types_are_equal<number,number2>::value)
-    if (this->m() > 15)
+    if (this->n()*this->m()*src.n() > 300)
     {
                                       // In case we have the BLAS
                                       // function gemm detected at
@@ -628,24 +628,20 @@ void FullMatrix<number>::mmult (FullMatrix<number2>       &dst,
 
   const unsigned int m = this->m(), n = src.n(), l = this->n();
 
-                                       // arrange the loops in a way 
-                                       // that we can access contiguous 
-                                       // fields at the innermost loop 
-                                       // (even though this introduces 
-                                       // a lot of writing into the 
-                                       // destination matrix)
-  if (!adding)
-    dst = (number2)0;
+                                       // arrange the loops in a way that
+                                       // we keep write operations low,
+                                       // (writing is usually more costly
+                                       // than reading), even though we
+                                       // need to access the data in src
+                                       // not in a contiguous way.
   for (unsigned int i=0; i<m; i++)
-    {
-      number2 * dst_ptr = &dst(i,0);
-      for (unsigned int k=0; k<l; k++)
-        {
-         const number2 mult = (number2)(*this)(i,k);
-         for (unsigned int j=0; j<n; j++)
-           dst_ptr[j] += mult * (number2)(src(k,j));
-       }
-    }
+    for (unsigned int j=0; j<n; j++)
+      {
+        number2 add_value = adding ? dst(i,j) : 0.;
+       for (unsigned int k=0; k<l; k++)
+         add_value += (number2)(*this)(i,k) * (number2)(src(k,j));
+       dst(i,j) = add_value;
+      }
 }
 
 
@@ -673,7 +669,7 @@ void FullMatrix<number>::Tmmult (FullMatrix<number2>       &dst,
        types_are_equal<number,float>::value)
       &&
       types_are_equal<number,number2>::value)
-    if (this->n() > 15)
+    if (this->n()*this->m()*src.n() > 300)
     {
                                       // In case we have the BLAS
                                       // function gemm detected at
@@ -720,24 +716,201 @@ void FullMatrix<number>::Tmmult (FullMatrix<number2>       &dst,
 
   const unsigned int m = n(), n = src.n(), l = this->m();
 
-                                       // arrange the loops in a way 
-                                       // that we can access contiguous 
-                                       // fields at the innermost loop 
-                                       // (even though this introduces 
-                                       // a lot of writing into the 
-                                       // destination matrix)
-  if (!adding)
-    dst = (number2)0;
+                                       // arrange the loops in a way that
+                                       // we keep write operations low,
+                                       // (writing is usually more costly
+                                       // than reading), even though we
+                                       // need to access the data in src
+                                       // not in a contiguous way. However,
+                                       // we should usually end up in the
+                                       // optimized gemm operation in case
+                                       // the matrix is big, so this
+                                       // shouldn't be too bad.
   for (unsigned int i=0; i<m; i++)
+    for (unsigned int j=0; j<n; j++)
+      {
+        number2 add_value = adding ? dst(i,j) : 0.;
+       for (unsigned int k=0; k<l; k++)
+         add_value += (number2)(*this)(k,i) * (number2)(src(k,j));
+       dst(i,j) = add_value;
+      }
+}
+
+
+
+template <typename number>
+template <typename number2>
+void FullMatrix<number>::mTmult (FullMatrix<number2>       &dst,
+                                const FullMatrix<number2> &src,
+                                const bool                 adding) const
+{
+  Assert (!this->empty(), ExcEmptyMatrix());
+  Assert (n() == src.n(), ExcDimensionMismatch(n(), src.n()));
+  Assert (dst.n() == src.m(), ExcDimensionMismatch(dst.n(), src.m()));
+  Assert (dst.m() == m(), ExcDimensionMismatch(m(), dst.m()));
+
+                                  // see if we can use BLAS algorithms
+                                  // for this and if the type for 'number'
+                                  // works for us (it is usually not
+                                  // efficient to use BLAS for very small
+                                  // matrices):
+#if defined(HAVE_DGEMM_) && defined (HAVE_SGEMM_)
+  if ((types_are_equal<number,double>::value
+       ||
+       types_are_equal<number,float>::value)
+      &&
+      types_are_equal<number,number2>::value)
+    if (this->n()*this->m()*src.m() > 300)
     {
-      number2 * dst_ptr = &dst(i,0);
-      for (unsigned int k=0; k<l; k++)
-        {
-         const number2 mult = (number2)(*this)(k,i);
-         for (unsigned int j=0; j<n; j++)
-           dst_ptr[j] += mult * (number2)(src(k,j));
-       }
+                                      // In case we have the BLAS
+                                      // function gemm detected at
+                                      // configure, we use that algorithm
+                                      // for matrix-matrix multiplication
+                                      // since it provides better
+                                      // performance than the deal.II
+                                      // native function (it uses cache
+                                      // and register blocking in order to
+                                      // access local data).
+                                      //
+                                      // Note that BLAS/LAPACK stores
+                                      // matrix elements column-wise (i.e.,
+                                      // all values in one column, then all
+                                      // in the next, etc.), whereas the
+                                      // FullMatrix stores them row-wise.
+                                      // We ignore that difference, and
+                                      // give our row-wise data to BLAS,
+                                      // let BLAS build the product of
+                                      // transpose matrices, and read the
+                                      // result as if it were row-wise
+                                      // again. In other words, we calculate 
+                                      // (B A^T)^T, which is AB^T.
+
+      const int m = src.m();
+      const int n = this->m();
+      const int k = this->n();
+      const char *notrans = "n";
+      const char *trans = "t";
+
+      const number alpha = 1.;
+      const number beta = (adding == true) ? 1. : 0.;
+
+                                      // Use the BLAS function gemm for
+                                      // calculating the matrix-matrix
+                                      // product.
+      internal::gemm_switch::gemm(trans, notrans, &m, &n, &k, &alpha, &src(0,0), &k,
+                                 this->val, &k, &beta, &dst(0,0), &m);
+
+      return;
+    }
+
+#endif
+
+  const unsigned int m = this->m(), n = src.m(), l = this->n();
+
+                                       // arrange the loops in a way that
+                                       // we keep write operations low,
+                                       // (writing is usually more costly
+                                       // than reading).
+  for (unsigned int i=0; i<m; i++)
+    for (unsigned int j=0; j<n; j++)
+      {
+        number2 add_value = adding ? dst(i,j) : 0.;
+       for (unsigned int k=0; k<l; k++)
+         add_value += (number2)(*this)(i,k) * (number2)(src(j,k));
+       dst(i,j) = add_value;
+      }
+}
+
+
+
+template <typename number>
+template <typename number2>
+void FullMatrix<number>::TmTmult (FullMatrix<number2>       &dst,
+                                 const FullMatrix<number2> &src,
+                                 const bool                 adding) const
+{
+  Assert (!this->empty(), ExcEmptyMatrix());  
+  Assert (m() == src.n(), ExcDimensionMismatch(m(), src.n()));
+  Assert (n() == dst.m(), ExcDimensionMismatch(n(), dst.m()));
+  Assert (src.m() == dst.n(), ExcDimensionMismatch(src.m(), dst.n()));
+
+
+                                  // see if we can use BLAS algorithms
+                                  // for this and if the type for 'number'
+                                  // works for us (it is usually not
+                                  // efficient to use BLAS for very small
+                                  // matrices):
+#if defined(HAVE_DGEMM_) && defined (HAVE_SGEMM_)
+  if ((types_are_equal<number,double>::value
+       ||
+       types_are_equal<number,float>::value)
+      &&
+      types_are_equal<number,number2>::value)
+    if (this->n()*this->m()*src.m() > 300)
+    {
+                                      // In case we have the BLAS
+                                      // function gemm detected at
+                                      // configure, we use that algorithm
+                                      // for matrix-matrix multiplication
+                                      // since it provides better
+                                      // performance than the deal.II
+                                      // native function (it uses cache
+                                      // and register blocking in order to
+                                      // access local data).
+                                      //
+                                      // Note that BLAS/LAPACK stores
+                                      // matrix elements column-wise (i.e.,
+                                      // all values in one column, then all
+                                      // in the next, etc.), whereas the
+                                      // FullMatrix stores them row-wise.
+                                      // We ignore that difference, and
+                                      // give our row-wise data to BLAS,
+                                      // let BLAS build the product of
+                                      // transpose matrices, and read the
+                                      // result as if it were row-wise
+                                      // again. In other words, we calculate 
+                                      // (B A)^T, which is A^T B^T.
+
+      const int m = src.n();
+      const int n = this->n();
+      const int k = this->m();
+      const char *trans = "t";
+
+      const number alpha = 1.;
+      const number beta = (adding == true) ? 1. : 0.;
+
+                                      // Use the BLAS function gemm for
+                                      // calculating the matrix-matrix
+                                      // product.
+      internal::gemm_switch::gemm(trans, trans, &m, &n, &k, &alpha, &src(0,0), &k,
+                                 this->val, &n, &beta, &dst(0,0), &m);
+
+      return;
     }
+
+#endif
+
+  const unsigned int m = n(), n = src.m(), l = this->m();
+
+                                       // arrange the loops in a way that
+                                       // we keep write operations low,
+                                       // (writing is usually more costly
+                                       // than reading), even though we
+                                       // need to access the data in the
+                                       // calling matrix not in a
+                                       // contiguous way. However, we
+                                       // should usually end up in the
+                                       // optimized gemm operation in case
+                                       // the matrix is big, so this
+                                       // shouldn't be too bad.
+  for (unsigned int i=0; i<m; i++)
+    for (unsigned int j=0; j<n; j++)
+      {
+        number2 add_value = adding ? dst(i,j) : 0.;
+       for (unsigned int k=0; k<l; k++)
+         add_value += (number2)(*this)(k,i) * (number2)(src(j,k));
+       dst(i,j) = add_value;
+      }
 }
 
 
index e84ba90d6ee2c62c78dec7a93b3429481998f146..a419a81e4a89b98fd1d41f6b871d4cf8ebbb210d 100644 (file)
@@ -32,7 +32,7 @@ template<typename number> class FullMatrix;
 
 
 /**
- * A variant of FullMatrix using LAPACK functions whereever
+ * A variant of FullMatrix using LAPACK functions wherever
  * possible. In order to do this, the matrix is stored in transposed
  * order. The element access functions hide this fact by reverting the
  * transposition.
index 2d7537b2abdb03277d5ff0a8a862a04732ea4dce..ef1ac6d9c982abc44f5b89b1131dd9512ee69ae3 100644 (file)
@@ -81,6 +81,10 @@ for (S1, S2 : REAL_SCALARS)
       void FullMatrix<S1>::mmult<S2> (FullMatrix<S2>&, const FullMatrix<S2>&, const bool) const;
     template
       void FullMatrix<S1>::Tmmult<S2> (FullMatrix<S2>&, const FullMatrix<S2>&, const bool) const;
+    template
+      void FullMatrix<S1>::mTmult<S2> (FullMatrix<S2>&, const FullMatrix<S2>&, const bool) const;
+    template
+      void FullMatrix<S1>::TmTmult<S2> (FullMatrix<S2>&, const FullMatrix<S2>&, const bool) const;
     template
       void FullMatrix<S1>::invert<S2> (const FullMatrix<S2>&);
  

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.