]> https://gitweb.dealii.org/ - dealii.git/commitdiff
We do not need the Cuthill-McKee renumbering when using AMG on the Stokes system...
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Wed, 19 Nov 2008 18:53:53 +0000 (18:53 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Wed, 19 Nov 2008 18:53:53 +0000 (18:53 +0000)
git-svn-id: https://svn.dealii.org/trunk@17646 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-31/step-31.cc
deal.II/examples/step-32/step-32.cc

index a224297f41df36b2572a2cc60b1e59307b157a75..7a232a532804ba18a466b15177edda2d259b196d 100644 (file)
@@ -409,10 +409,12 @@ namespace LinearSolvers
                                   // Replacing <i>P</i> by $\tilde{P}$
                                   // keeps that spirit alive: the product
                                   // $P^{-1} A$ will still be close to a
-                                  // matrix with eigenvalues 1, which lets
-                                  // us hope to be able to get a number of
-                                  // GMRES iterations that does not depend
-                                  // on the problem size.
+                                  // matrix with eigenvalues 1 with a
+                                  // distribution that does not depend on
+                                  // the problem size. This lets us hope to
+                                  // be able to get a number of GMRES
+                                  // iterations that is problem-size
+                                  // independent.
                                   //
                                   // The deal.II users who have already
                                   // gone through the step-20 and step-22
@@ -1037,17 +1039,26 @@ compute_viscosity (const std::vector<double>          &old_temperature,
                                 // program. Its basic operations are similar
                                 // to what we do in step-22.
                                 // 
-                                // The body of the function first enumerates
-                                // all degrees of freedom for the Stokes and
-                                // temperature systems. In either case, it
-                                // then renumbers them according to the
-                                // Cuthill-McKee algorithm to improve the
-                                // behavior of preconditioners; for the
-                                // Stokes part, degrees of freedom are then
-                                // also renumbered to ensure that velocities
+                                // The body of the function first
+                                // enumerates all degrees of freedom for
+                                // the Stokes and temperature systems. For
+                                // the Stokes part, degrees of freedom are
+                                // then sorted to ensure that velocities
                                 // precede pressure DoFs so that we can
                                 // partition the Stokes matrix into a
-                                // $2\times 2$ matrix.
+                                // $2\times 2$ matrix. As a difference to
+                                // step-22, we do not perform any
+                                // additional DoF renumbering. In that
+                                // program, it paid off since our solver
+                                // was heavily dependent on ILU's, whereas
+                                // we use AMG here which is not sensitive
+                                // to the DoF numbering. The IC
+                                // preconditioner for the inversion of the
+                                // pressure mass matrix would of course
+                                // take advantage of a Cuthill-McKee like
+                                // renumbering, but its costs are low
+                                // compared to the velocity portion, so the
+                                // additional work does not pay off.
                                 // 
                                 // We then proceed with the generation of the
                                 // hanging node constraints that arise from
@@ -1077,7 +1088,6 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
   
   {
     stokes_dof_handler.distribute_dofs (stokes_fe);
-    DoFRenumbering::Cuthill_McKee (stokes_dof_handler);
     DoFRenumbering::component_wise (stokes_dof_handler, stokes_sub_blocks);
     
     stokes_constraints.clear ();
@@ -1092,7 +1102,6 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
   }
   {
     temperature_dof_handler.distribute_dofs (temperature_fe);
-    DoFRenumbering::Cuthill_McKee (temperature_dof_handler);
 
     temperature_constraints.clear ();
     DoFTools::make_hanging_node_constraints (temperature_dof_handler,
@@ -2050,29 +2059,28 @@ void BoussinesqFlowProblem<dim>::assemble_temperature_system ()
       stokes_fe_values.get_function_values (old_stokes_solution,
                                            old_old_stokes_values);
 
-                                      // Next, we calculate the
-                                      // artificial viscosity for
-                                      // stabilization according to the
-                                      // discussion in the introduction
-                                      // using the dedicated
+                                      // Next, we calculate the artificial
+                                      // viscosity for stabilization
+                                      // according to the discussion in the
+                                      // introduction using the dedicated
                                       // function. With that at hand, we
-                                      // can get into the loop
-                                      // over quadrature points and local
-                                      // rhs vector components. The terms
-                                      // here are quite lenghty, but
-                                      // their definition follows the
-                                      // time-discrete system developed
-                                      // in the introduction of this
+                                      // can get into the loop over
+                                      // quadrature points and local rhs
+                                      // vector components. The terms here
+                                      // are quite lenghty, but their
+                                      // definition follows the
+                                      // time-discrete system developed in
+                                      // the introduction of this
                                       // program. The BDF-2 scheme needs
                                       // one more term from the old time
                                       // step (and involves more
                                       // complicated factors) than the
-                                      // backward Euler scheme that is
-                                      // used for the first time
-                                      // step. When all this is done, we
-                                      // distribute the local vector into
-                                      // the global one (including
-                                      // hanging node constraints).
+                                      // backward Euler scheme that is used
+                                      // for the first time step. When all
+                                      // this is done, we distribute the
+                                      // local vector into the global one
+                                      // (including hanging node
+                                      // constraints).
       const double nu
        = compute_viscosity (old_temperature_values,
                             old_old_temperature_values,
@@ -2269,33 +2277,33 @@ void BoussinesqFlowProblem<dim>::solve ()
                                   // Next we set up the temperature system
                                   // and the right hand side using the
                                   // function
-                                  // <code>assemble_temperature_system()</code>. Knowing
-                                  // the matrix and right hand side of the
-                                  // temperature equation, we set up a
-                                  // preconditioner and a solver. The
+                                  // <code>assemble_temperature_system()</code>.
+                                  // Knowing the matrix and right hand side
+                                  // of the temperature equation, we set up
+                                  // preconditioner and a solver. The
                                   // temperature matrix is a mass matrix
                                   // (with eigenvalues around one) plus a
-                                  // Laplace matrix (with eigenvalues between
-                                  // zero and $ch^{-2}$) times a small number
-                                  // proportional to the time step
-                                  // $k_n$. Hence, the resulting symmetric
-                                  // and positive definite matrix has
-                                  // eigenvalues in the range
+                                  // Laplace matrix (with eigenvalues
+                                  // between zero and $ch^{-2}$) times a
+                                  // small number proportional to the time
+                                  // step $k_n$. Hence, the resulting
+                                  // symmetric and positive definite matrix
+                                  // has eigenvalues in the range
                                   // $[1,1+k_nh^{-2}]$ (up to
                                   // constants). This matrix is only
                                   // moderately ill conditioned even for
-                                  // small mesh sizes and we get a reasonably
-                                  // good preconditioner by simple means, for
-                                  // example SSOR with a relaxation
-                                  // parameter of 1.2. As a solver, we choose
-                                  // the conjugate gradient method CG. As
-                                  // before, we tell the solver to use
-                                  // Trilinos vectors via the template
-                                  // argument
+                                  // small mesh sizes and we get a
+                                  // reasonably good preconditioner by
+                                  // simple means, for example SSOR with a
+                                  // relaxation parameter of 1.2. As a
+                                  // solver, we choose the conjugate
+                                  // gradient method CG. As before, we tell
+                                  // the solver to use Trilinos vectors via
+                                  // the template argument
                                   // <code>TrilinosWrappers::Vector</code>.
-                                  // Finally, we solve,
-                                  // distribute the hanging node constraints
-                                  // and write out the number of iterations.
+                                  // Finally, we solve, distribute the
+                                  // hanging node constraints and write out
+                                  // the number of iterations.
   old_time_step = time_step;    
   time_step = 1./(1.6*dim*std::sqrt(1.*dim)) /
              temperature_degree *
@@ -2407,52 +2415,51 @@ void BoussinesqFlowProblem<dim>::output_results ()  const
   Vector<double> joint_solution (joint_dof_handler.n_dofs());
 
                                   // Unfortunately, there is no
-                                  // straight-forward relation that tells us
-                                  // how to sort Stokes and temperature
-                                  // vector into the joint vector. The way we
-                                  // can get around this trouble is to rely
-                                  // on the information collected in the
-                                  // FESystem. For each dof in a cell, the
-                                  // joint finite element knows to which
-                                  // equation component (velocity component,
-                                  // pressure, or temperature) it belongs
-                                  // &ndash; that's the information we need!
-                                  // So we step through all cells (with
-                                  // iterators into all three DoFHandlers
-                                  // moving in synch), and for each joint
-                                  // cell dof, we read out that component
-                                  // using the
+                                  // straight-forward relation that tells
+                                  // us how to sort Stokes and temperature
+                                  // vector into the joint vector. The way
+                                  // we can get around this trouble is to
+                                  // rely on the information collected in
+                                  // the FESystem. For each dof in a cell,
+                                  // the joint finite element knows to
+                                  // which equation component (velocity
+                                  // component, pressure, or temperature)
+                                  // it belongs &ndash; that's the
+                                  // information we need!  So we step
+                                  // through all cells (with iterators into
+                                  // all three DoFHandlers moving in
+                                  // synch), and for each joint cell dof,
+                                  // we read out that component using the
                                   // FiniteElement::system_to_base_index
-                                  // function (see there for a description of
-                                  // what the various parts of its return
-                                  // value contain). We also need to keep
-                                  // track whether we're on a Stokes dof or a
-                                  // temperature dof, which is contained in
-                                  // <code>joint_fe.system_to_base_index(i).first.first</code>. Eventually,
-                                  // the dof_indices data structures on
-                                  // either of the three systems tell us how
-                                  // the relation between global vector and
-                                  // local dofs looks like on the present
-                                  // cell, which concludes this tedious work.
+                                  // function (see there for a description
+                                  // of what the various parts of its
+                                  // return value contain). We also need to
+                                  // keep track whether we're on a Stokes
+                                  // dof or a temperature dof, which is
+                                  // contained in
+                                  // <code>joint_fe.system_to_base_index(i).first.first</code>.
+                                  // Eventually, the dof_indices data
+                                  // structures on either of the three
+                                  // systems tell us how the relation
+                                  // between global vector and local dofs
+                                  // looks like on the present cell, which
+                                  // concludes this tedious work.
                                   // 
-                                  // There's one thing worth
-                                  // remembering when looking at the
-                                  // output: In our algorithm, we
-                                  // first solve for the Stokes
-                                  // system at time level <i>n-1</i>
-                                  // in each time step and then for
-                                  // the temperature at time level
-                                  // <i>n</i> using the previously
-                                  // computed velocity. These are the
-                                  // two components we join for
-                                  // output, so these two parts of
-                                  // the output file are actually
-                                  // misaligned by one time
-                                  // step. Since we consider
-                                  // graphical output as only a
-                                  // qualititative means to
-                                  // understand a solution, we ignore
-                                  // this $\mathcal{O}(h)$ error.
+                                  // There's one thing worth remembering
+                                  // when looking at the output: In our
+                                  // algorithm, we first solve for the
+                                  // Stokes system at time level <i>n-1</i>
+                                  // in each time step and then for the
+                                  // temperature at time level <i>n</i>
+                                  // using the previously computed
+                                  // velocity. These are the two components
+                                  // we join for output, so these two parts
+                                  // of the output file are actually
+                                  // misaligned by one time step. Since we
+                                  // consider graphical output as only a
+                                  // qualititative means to understand a
+                                  // solution, we ignore this
+                                  // $\mathcal{O}(h)$ error.
   {
     std::vector<unsigned int> local_joint_dof_indices (joint_fe.dofs_per_cell);
     std::vector<unsigned int> local_stokes_dof_indices (stokes_fe.dofs_per_cell);
@@ -2493,30 +2500,27 @@ void BoussinesqFlowProblem<dim>::output_results ()  const
       }
   }
   
-                                  // Next, we proceed as we've done
-                                  // in step-22. We create solution
-                                  // names (that are going to appear
-                                  // in the visualization program for
-                                  // the individual components), and
-                                  // attach the joint dof handler to
-                                  // a DataOut object. The first
-                                  // <code>dim</code> components are the
-                                  // vector velocity, and then we
-                                  // have pressure and
-                                  // temperature. This information is
-                                  // read out using the
-                                  // DataComponentInterpretation
-                                  // helper class. Next, we attach
-                                  // the solution values together
-                                  // with the names of its components
-                                  // to the output object, and build
-                                  // patches according to the degree
-                                  // of freedom, which are (sub-)
-                                  // elements that describe the data
-                                  // for visualization
-                                  // programs. Finally, we set a file
-                                  // name (that includes the time
-                                  // step number) and write the vtk
+                                  // Next, we proceed as we've done in
+                                  // step-22. We create solution names
+                                  // (that are going to appear in the
+                                  // visualization program for the
+                                  // individual components), and attach the
+                                  // joint dof handler to a DataOut
+                                  // object. The first <code>dim</code>
+                                  // components are the vector velocity,
+                                  // and then we have pressure and
+                                  // temperature. This information is read
+                                  // out using the
+                                  // DataComponentInterpretation helper
+                                  // class. Next, we attach the solution
+                                  // values together with the names of its
+                                  // components to the output object, and
+                                  // build patches according to the degree
+                                  // of freedom, which are (sub-) elements
+                                  // that describe the data for
+                                  // visualization programs. Finally, we
+                                  // set a file name (that includes the
+                                  // time step number) and write the vtk
                                   // file.
   std::vector<std::string> joint_solution_names (dim, "velocity");
   joint_solution_names.push_back ("p");
index 47dab02c45fd8c757e2af2a7a3ed83f65db5d23b..36f23e60099967eb62bea42d12eb5a156d288547 100644 (file)
@@ -567,7 +567,6 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
 
   {
     stokes_dof_handler.distribute_dofs (stokes_fe);
-    DoFRenumbering::Cuthill_McKee (stokes_dof_handler);
     DoFRenumbering::subdomain_wise (stokes_dof_handler);
     DoFRenumbering::component_wise (stokes_dof_handler, stokes_sub_blocks);
     
@@ -583,7 +582,6 @@ void BoussinesqFlowProblem<dim>::setup_dofs ()
   }
   {
     temperature_dof_handler.distribute_dofs (temperature_fe);
-    DoFRenumbering::Cuthill_McKee (temperature_dof_handler);
     DoFRenumbering::subdomain_wise (temperature_dof_handler);
 
     temperature_constraints.clear ();

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.