]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Almost finish program, some text.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 27 Feb 2000 22:12:08 +0000 (22:12 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Sun, 27 Feb 2000 22:12:08 +0000 (22:12 +0000)
git-svn-id: https://svn.dealii.org/trunk@2497 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/Attic/examples/step-by-step/step-7/step-7.cc
deal.II/examples/step-7/step-7.cc

index 0caa12938f6e8b5e127ee82ffd02a9f95fead1dd..46b0754f774366d1c486c001e7fd858843952bf5 100644 (file)
@@ -1,6 +1,10 @@
 /* $Id$ */
 /* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
 
+                                // These first include files have all
+                                // been treated in previous examples,
+                                // so we won't explain what is in
+                                // them again.
 #include <base/quadrature_lib.h>
 #include <base/function.h>
 #include <base/logstream.h>
 #include <lac/vector_memory.h>
 #include <lac/precondition.h>
 #include <grid/tria.h>
-#include <dofs/dof_handler.h>
 #include <grid/grid_generator.h>
 #include <grid/tria_accessor.h>
 #include <grid/tria_iterator.h>
 #include <grid/tria_boundary_lib.h>
+#include <dofs/dof_handler.h>
+#include <dofs/dof_constraints.h>
 #include <dofs/dof_accessor.h>
 #include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
 #include <fe/fe_lib.lagrange.h>
-#include <dofs/dof_constraints.h>
+#include <numerics/matrices.h>
 #include <numerics/error_estimator.h>
+#include <numerics/data_out.h>
 
+                                // In this example, we will not use
+                                // the numeration scheme which is
+                                // used per default by the
+                                // ``DoFHandler'' class, but will
+                                // renumber them using the
+                                // Cuthill-McKee algorithm. The
+                                // necessary functions are declared
+                                // in the following file:
 #include <numerics/dof_renumbering.h>
+                                // Then we will show a little trick
+                                // how we can make sure that objects
+                                // are not deleted while they are
+                                // still in use. For this purpose,
+                                // there is the ``SmartPointer''
+                                // helper class, which is declared in
+                                // this file:
 #include <base/smartpointer.h>
+                                // Then we will want to use the
+                                // ``integrate_difference'' function
+                                // mentioned in the introduction. It
+                                // comes from this file:
+#include <numerics/vectors.h>
+                                // And finally, we need to use the
+                                // ``FEFaceValues'' class, which is
+                                // declare in the same file as the
+                                // ``FEValues'' class:
+#include <fe/fe_values.h>
 
 #include <fstream>
 
 
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-    enum RefinementMode {
-         global_refinement, adaptive_refinement
-    };
-    
-    LaplaceProblem (const FiniteElement<dim> &fe,
-                   const RefinementMode      refinement_mode);
-    ~LaplaceProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void refine_grid ();
-    void process_solution (const unsigned int cycle) const;
-
-    Triangulation<dim>                      triangulation;
-    DoFHandler<dim>                         dof_handler;
-                                    //...
-    SmartPointer<const FiniteElement<dim> > fe;
-    ConstraintMatrix                        hanging_node_constraints;
-
-    SparsityPattern                         sparsity_pattern;
-    SparseMatrix<double>                    system_matrix;
-
-    Vector<double>                          solution;
-    Vector<double>                          system_rhs;
-
-    RefinementMode                          refinement_mode;
-};
-
-
 
+                                // Since we want to compare the
+                                // exactly known continuous solution
+                                // to the computed one, we need a
+                                // function object which represents
+                                // the continuous solution. On the
+                                // other hand, we need the right hand
+                                // side function, and that one of
+                                // course shares some characteristics
+                                // with the solution. In order to
+                                // reduce dependencies which arise if
+                                // we have to change something in
+                                // both classes at the same time, we
+                                // exclude the common characteristics
+                                // of both functions into a base
+                                // class.
+                                //
+                                // The common characteristics for the
+                                // given solution, which as explained
+                                // in the introduction is a sum of
+                                // three exponentials, are here: the
+                                // number of exponentials, their
+                                // centers, and their half width. We
+                                // declare them in the following
+                                // class. Since the number of
+                                // exponentials is a constant scalar
+                                // integral quantity, C++ allows its
+                                // definition (i.e. assigning a
+                                // value) right at the place of
+                                // declaration (i.e. where we declare
+                                // that such a variable exists).
 template <int dim>
 class SolutionBase 
 {
@@ -78,30 +100,24 @@ class SolutionBase
 };
 
 
-template <int dim>
-class Solution : public Function<dim>,
-                protected SolutionBase<dim>
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-class RightHandSide : public Function<dim>,
-                     protected SolutionBase<dim>
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
+                                // The variables which denote the
+                                // centers and the width of the
+                                // exponentials have just been
+                                // declared, now we still need to
+                                // assign values to them. Here, we
+                                // can show another small piece of
+                                // template sourcery, namely how we
+                                // can assign different values to
+                                // these variables depending on the
+                                // dimension. We will only use the 2d
+                                // case in the program, but we show
+                                // the 1d case for exposition of a
+                                // useful technique.
+                                //
+                                // First we assign values to the
+                                // centers for the 1d case, where we
+                                // place the centers equidistanly at
+                                // -1/3, 0, and 1/3:
 template <>
 const Point<1>
 SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
@@ -109,6 +125,8 @@ SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
     Point<1>(0.0), 
     Point<1>(+1.0 / 3.0)   };
 
+                                // Then we place the centers for the
+                                // 2d case as follows:
 template <>
 const Point<2>
 SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
@@ -116,11 +134,56 @@ SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
     Point<2>(-0.5, -0.5), 
     Point<2>(+0.5, -0.5)   };
 
+                                // There remains to assign a value to
+                                // the half-width of the
+                                // exponentials. We would like to use
+                                // the same value for all dimensions,
+                                // so here is how that works:
 template <int dim>
-const double SolutionBase<dim>::width = 0.15;
-
+const double SolutionBase<dim>::width = 1./3.;
+
+
+
+                                // After declaring and defining the
+                                // characteristics of solution and
+                                // right hand side, we can declare
+                                // the classes representing these
+                                // two. They both represent
+                                // continuous functions, so they are
+                                // derived from the ``Function<dim>''
+                                // base class, and they also inherit
+                                // the characteristics defined in the
+                                // ``SolutionBase'' class.
+                                //
+                                // The actual classes are declared in
+                                // the following. Note that in order
+                                // to compute the error of the
+                                // numerical solution against the
+                                // continuous one in the L2 and H1
+                                // norms, we have to export value and
+                                // gradient of the exact solution,
+                                // which is done by overloading the
+                                // respective virtual member
+                                // functions in the ``Function'' base
+                                // class.
+template <int dim>
+class Solution : public Function<dim>,
+                protected SolutionBase<dim>
+{
+  public:
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                   const unsigned int  component = 0) const;
+};
 
 
+                                // The actual definition of the
+                                // values and gradients of the exact
+                                // solution class is according to
+                                // their mathematical definition and
+                                // probably needs not much
+                                // explanation.
 template <int dim>
 double Solution<dim>::value (const Point<dim>   &p,
                             const unsigned int) const
@@ -128,8 +191,18 @@ double Solution<dim>::value (const Point<dim>   &p,
   double return_value = 0;
   for (unsigned int i=0; i<n_source_centers; ++i)
     {
+                                      // One of the few things worth
+                                      // mentioning is the following
+                                      // variables, which represents
+                                      // the vector (x-x_i). It is
+                                      // computed in the way that one
+                                      // would intuitively expect:
       const Point<dim> shifted_point = p-source_centers[i];
       
+                                      // The ``Point<dim>'' class
+                                      // offers a member function
+                                      // ``square'' that does what
+                                      // it's name suggests.
       return_value += exp(-shifted_point.square() / (width*width));
     };
   
@@ -142,11 +215,40 @@ template <int dim>
 Tensor<1,dim> Solution<dim>::gradient (const Point<dim>   &p,
                                       const unsigned int) const
 {
+                                  // In order to accumulate the
+                                  // gradient from the contributions
+                                  // of the exponentials, we allocate
+                                  // an object which denotes the
+                                  // mathematical quantity of a
+                                  // tensor of rank ``1'' and
+                                  // dimension ``dim''. Its default
+                                  // constructor sets it to the
+                                  // vector containing only zeroes,
+                                  // so we need not explicitely care
+                                  // for its initialization.
   Tensor<1,dim> return_value;
+                                  // Note that we could as well have
+                                  // taken the type of the object to
+                                  // be ``Point<dim>''. Tensors of
+                                  // rank 1 and points are almost
+                                  // exchangeable, and have only very
+                                  // slightly different mathematical
+                                  // meanings. In fact, the
+                                  // ``Point<dim>'' class is derived
+                                  // from the ``Tensor<1,dim>''
+                                  // class, which makes up for their
+                                  // mutual exchangeability.
+
   for (unsigned int i=0; i<n_source_centers; ++i)
     {
       const Point<dim> shifted_point = p-source_centers[i];
       
+                                      // For the gradient, note that
+                                      // it's direction is along
+                                      // (x-x_i), so we add up
+                                      // multiples of this distance
+                                      // vector, where the factor is
+                                      // given by the exponentials.
       return_value += (-2 / (width*width) *
                       exp(-shifted_point.square() / (width*width)) *
                       shifted_point);
@@ -157,6 +259,33 @@ Tensor<1,dim> Solution<dim>::gradient (const Point<dim>   &p,
 
 
 
+                                // Besides the function that
+                                // represents the exact solution, we
+                                // also need a function which we can
+                                // use as right hand side when
+                                // assembling the linear system of
+                                // discretized equations. This is
+                                // accomplished using the following
+                                // class and the following definition
+                                // of its function. Note that here we
+                                // only need the value of the
+                                // function, not its gradients or
+                                // higher derivatives.
+template <int dim>
+class RightHandSide : public Function<dim>,
+                     protected SolutionBase<dim>
+{
+  public:
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+};
+
+
+                                // The value of the right hand side
+                                // is given by the negative Laplacian
+                                // of the solution plus the solution
+                                // itself, since we wanted to solve
+                                // Helmholtz's equation:
 template <int dim>
 double RightHandSide<dim>::value (const Point<dim>   &p,
                                  const unsigned int) const
@@ -166,8 +295,14 @@ double RightHandSide<dim>::value (const Point<dim>   &p,
     {
       const Point<dim> shifted_point = p-source_centers[i];
       
-      return_value += ((2*dim - 4*shifted_point.square()/(width*width)) / (width*width) *
+                                      // The first contribution is
+                                      // the Laplacian:
+      return_value += ((2*dim - 4*shifted_point.square()/(width*width)) / 
+                      (width*width) *
                       exp(-shifted_point.square() / (width*width)));
+                                      // And the second is the
+                                      // solution itself:
+      return_value += exp(-shifted_point.square() / (width*width));
     };
   
   return return_value;
@@ -175,6 +310,47 @@ double RightHandSide<dim>::value (const Point<dim>   &p,
 
 
 
+                                // Then we need the class that does
+                                // all the work.
+//.......................
+template <int dim>
+class LaplaceProblem 
+{
+  public:
+    enum RefinementMode {
+         global_refinement, adaptive_refinement
+    };
+    
+    LaplaceProblem (const FiniteElement<dim> &fe,
+                   const RefinementMode      refinement_mode);
+    ~LaplaceProblem ();
+    void run ();
+    
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void solve ();
+    void refine_grid ();
+    void process_solution (const unsigned int cycle) const;
+
+    Triangulation<dim>                      triangulation;
+    DoFHandler<dim>                         dof_handler;
+                                    //...
+    SmartPointer<const FiniteElement<dim> > fe;
+    ConstraintMatrix                        hanging_node_constraints;
+
+    SparsityPattern                         sparsity_pattern;
+    SparseMatrix<double>                    system_matrix;
+
+    Vector<double>                          solution;
+    Vector<double>                          system_rhs;
+
+    RefinementMode                          refinement_mode;
+};
+
+
+
+
 template <int dim>
 LaplaceProblem<dim>::LaplaceProblem (const FiniteElement<dim> &fe,
                                     const RefinementMode refinement_mode) :
@@ -192,13 +368,42 @@ LaplaceProblem<dim>::~LaplaceProblem ()
 };
 
 
-
+                                // The following function sets up the
+                                // degrees of freedom, sizes of
+                                // matrices and vectors, etc. Most of
+                                // its functionality has been showed
+                                // in previous examples, the only
+                                // difference being the renumbering
+                                // step.
 template <int dim>
 void LaplaceProblem<dim>::setup_system ()
 {
   dof_handler.distribute_dofs (*fe);
-                                  // Renumber the degrees of freedom...
+                                  // Renumbering the degrees of
+                                  // freedom is not overly difficult,
+                                  // as long as you use one of the
+                                  // algorithms included in the
+                                  // library. It requires just one
+                                  // line of code, namely the
+                                  // following:
   DoFRenumbering::Cuthill_McKee (dof_handler);
+                                  // Note, however, that when you
+                                  // renumber the degrees of freedom,
+                                  // you must do so immediately after
+                                  // distributing them, since such
+                                  // things as hanging nodes, the
+                                  // sparsity pattern etc. depend on
+                                  // the absolute numbers which are
+                                  // altered by renumbering.
+                                  //
+                                  // Renumbering does not serve any
+                                  // specific purpose in this
+                                  // example, it is done only for
+                                  // exposition of the technique. To
+                                  // see the effect of renumbering on
+                                  // the sparsity pattern of the
+                                  // matrix, refer to the second
+                                  // example program.
 
   hanging_node_constraints.clear ();
   DoFTools::make_hanging_node_constraints (dof_handler,
@@ -220,19 +425,101 @@ void LaplaceProblem<dim>::setup_system ()
 
 
 
+                                // Assembling the system of equations
+                                // for the problem at hand is mostly
+                                // as for the example programs
+                                // before. However, some things have
+                                // changed anyway, so we comment on
+                                // this function fairly extensively.
 template <int dim>
 void LaplaceProblem<dim>::assemble_system () 
 {  
-  QGauss3<dim>  quadrature_formula;
-  FEValues<dim> fe_values (*fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
+                                  // First we need to define objects
+                                  // which will be used as quadrature
+                                  // formula for domain and face
+                                  // integrals.
+                                  //
+                                  // Note the way in which we define
+                                  // a quadrature rule for the faces:
+                                  // it is simply a quadrature rule
+                                  // for one dimension less!
+  QGauss3<dim>   quadrature_formula;
+  QGauss3<dim-1> face_quadrature_formula;
+                                  // For simpler use later on, we
+                                  // alias the number of quadrature
+                                  // points to local variables:
+  const unsigned int n_q_points    = quadrature_formula.n_quadrature_points;
+  const unsigned int n_face_q_points = face_quadrature_formula.n_quadrature_points;
+  
+                                  // Then we need objects which can
+                                  // evaluate the values, gradients,
+                                  // etc of the shape functions at
+                                  // the quadrature points. While it
+                                  // seems that it should be feasible
+                                  // to do it with one object for
+                                  // both domain and face integrals,
+                                  // there is a subtle difference
+                                  // since the weights in the domain
+                                  // integrals include the measure of
+                                  // the cell in the domain, while
+                                  // the face integral quadrature
+                                  // requires the measure of the face
+                                  // in a lower-dimensional
+                                  // mannifold. Internally these two
+                                  // classes are rooted on a common
+                                  // base class which does most of
+                                  // the work; that, however, is
+                                  // something that you need not
+                                  // worry about.
+                                  //
+                                  // For the domain integrals in the
+                                  // bilinear form for Helmholtz's
+                                  // equation, we need to compute the
+                                  // values and gradients, as well as
+                                  // the weights at the quadrature
+                                  // points. Furthermore, we need the
+                                  // quadrature points on the real
+                                  // cell (rather than on the unit
+                                  // cell) to evaluate the right hand
+                                  // side function.
+  FEValues<dim>  fe_values (*fe, quadrature_formula, 
+                           UpdateFlags(update_values    |
+                                       update_gradients |
+                                       update_q_points  |
+                                       update_JxW_values));
+
+                                  // For the face integrals, we only
+                                  // need the values of the shape
+                                  // functions, as well as the
+                                  // weights. We also need the normal
+                                  // vectors and quadrature points on
+                                  // the real cell since we want to
+                                  // determine the Neumann values
+                                  // from the exact solution object
+                                  // (see below).
+  FEFaceValues<dim> fe_face_values (*fe, face_quadrature_formula, 
+                                   UpdateFlags(update_values         |
+                                               update_q_points       |
+                                               update_normal_vectors |
+                                               update_JxW_values));
+
+                                  // In order to make programming
+                                  // more readable below, we alias
+                                  // the number of degrees of freedom
+                                  // per cell to a local variable, as
+                                  // already done for the number of
+                                  // quadrature points above:
   const unsigned int   dofs_per_cell = fe->dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
 
+                                  // Then we need some objects
+                                  // already known from previous
+                                  // examples: An object denoting the
+                                  // right hand side function, its
+                                  // values at the quadrature points
+                                  // on a cell, the cell matrix and
+                                  // right hand side, and the indices
+                                  // of the degrees of freedom on a
+                                  // cell.
   RightHandSide<dim>   right_hand_side;
   vector<double>       rhs_values (n_q_points);
 
@@ -241,6 +528,28 @@ void LaplaceProblem<dim>::assemble_system ()
 
   vector<unsigned int> local_dof_indices (dofs_per_cell);
 
+                                  // Then we define an object
+                                  // denoting the exact solution
+                                  // function. We will use it to
+                                  // compute the Neumann values at
+                                  // the boundary from it. Usually,
+                                  // one would of course do so using
+                                  // a separate object, in particular
+                                  // since the exact solution is not
+                                  // known while the Neumann values
+                                  // are prescribed. We will,
+                                  // however, be a little bit lazy
+                                  // and use what we already have in
+                                  // information. Real-life programs
+                                  // would to go other ways here, of
+                                  // course.
+  Solution<dim> exact_solution;
+
+                                  // Now for the main loop over all
+                                  // cells. This is mostly unchanged
+                                  // from previous examples, so we
+                                  // only comment on the things that
+                                  // have changed.
   DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
                                        endc = dof_handler.end();
   for (; cell!=endc; ++cell)
@@ -264,16 +573,134 @@ void LaplaceProblem<dim>::assemble_system ()
        for (unsigned int i=0; i<dofs_per_cell; ++i)
          {
            for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (shape_grads[i][q_point] *
-                                  shape_grads[j][q_point] *
-                                  JxW_values[q_point]);
+                                              // The first thing that
+                                              // has changed is the
+                                              // bilinear form. It
+                                              // now contains the
+                                              // additional term from
+                                              // the Helmholtz
+                                              // equation, namely the
+                                              // scalar products of
+                                              // the two function
+                                              // values, rather than
+                                              // their gradients,
+                                              // which is the second
+                                              // term below:
+             cell_matrix(i,j) += ((shape_grads[i][q_point] *
+                                   shape_grads[j][q_point] *
+                                   JxW_values[q_point])
+                                  +
+                                  (shape_values(i,q_point) *
+                                   shape_values(j,q_point) *
+                                   JxW_values[q_point]));
 
            cell_rhs(i) += (shape_values (i,q_point) *
                            rhs_values [q_point] *
                            fe_values.JxW (q_point));
          };
 
+                                      // Then there is that second
+                                      // term on the right hand side,
+                                      // the contour integral. First
+                                      // we have to find out whether
+                                      // the intersection of the face
+                                      // of this cell with the
+                                      // boundary part Gamma2 is
+                                      // nonzero. To this end, we
+                                      // loop over all faces and
+                                      // check whether its boundary
+                                      // indicator equals ``1'',
+                                      // which is the value that we
+                                      // have assigned to that
+                                      // portions of the boundary
+                                      // composing Gamma2 in a
+                                      // function further below. The
+                                      // default value of boundary
+                                      // indicators is ``0'' for
+                                      // external faces, and ``255''
+                                      // for internal faces (the
+                                      // latter value should never be
+                                      // changed, and there is also
+                                      // no need to do so), so faces
+                                      // can only have an indicator
+                                      // equal to ``1'' if we have
+                                      // explicitely set it.
+      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+       if (cell->face(face)->boundary_indicator() == 1)
+         {
+                                            // If we came into here,
+                                            // then we have found an
+                                            // external face
+                                            // belonging to
+                                            // Gamma2. Next, we have
+                                            // to compute the values
+                                            // of the shape functions
+                                            // and the other
+                                            // quantities which we
+                                            // will need for the
+                                            // computation of the
+                                            // contour integral. This
+                                            // is done using the
+                                            // ``reinit'' function
+                                            // which we already know
+                                            // from the ``FEValue''
+                                            // class:
+           fe_face_values.reinit (cell, face);
+
+                                            // Then, for simpler
+                                            // access, we alias the
+                                            // various quantities to
+                                            // local variables:
+           const FullMatrix<double> 
+             & face_shape_values   = fe_face_values.get_shape_values();
+           const vector<double>
+             & face_JxW_values     = fe_face_values.get_JxW_values();
+           const vector<Point<dim> >
+             & face_q_points       = fe_face_values.get_quadrature_points();
+           const vector<Point<dim> >
+             & face_normal_vectors = fe_face_values.get_normal_vectors ();
+
+                                            // And we can then
+                                            // perform the
+                                            // integration by using a
+                                            // loop over all
+                                            // quadrature points.
+           for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
+             {
+                                                // On each quadrature
+                                                // point, we first
+                                                // compute the value
+                                                // of the normal
+                                                // derivative. We do
+                                                // so using the
+                                                // gradient of the
+                                                // exact solution and
+                                                // the normal vector
+                                                // to the face at the
+                                                // present quadrature
+                                                // point:
+               const double neumann_value
+                 = (exact_solution.gradient (face_q_points[q_point]) *
+                    face_normal_vectors[q_point]);
+
+                                                // Using this, we can
+                                                // compute the
+                                                // contribution of
+                                                // this face for each
+                                                // shape function:
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 cell_rhs(i) += (neumann_value *
+                                 face_shape_values(i,q_point) *
+                                 face_JxW_values[q_point]);
+             };
+         };
 
+                                      // Now that we have the
+                                      // contributions of the present
+                                      // cell, we can transfer it to
+                                      // the global matrix and right
+                                      // hand side vector, as in the
+                                      // examples before.
       cell->get_dof_indices (local_dof_indices);
       for (unsigned int i=0; i<dofs_per_cell; ++i)
        {
@@ -286,9 +713,29 @@ void LaplaceProblem<dim>::assemble_system ()
        };
     };
 
+                                  // The rest of the function has
+                                  // also been shown previously:
   hanging_node_constraints.condense (system_matrix);
   hanging_node_constraints.condense (system_rhs);
 
+                                  // Only with the interpolation of
+                                  // boundary values, there is one
+                                  // notable thing, namely that now
+                                  // the boundary indicator for which
+                                  // we interpolate boundary values
+                                  // (denoted by the second parameter
+                                  // to
+                                  // ``interpolate_boundary_values'')
+                                  // does not represent the whole
+                                  // boundary an more. Rather, it is
+                                  // that portion of the boundary
+                                  // which we have not assigned
+                                  // another indicator (see
+                                  // below). The degrees of freedom
+                                  // at the boundary that do not
+                                  // belong to Gamma1 are therefore
+                                  // excluded from the interpolation
+                                  // of boundary values.
   map<unsigned int,double> boundary_values;
   VectorTools::interpolate_boundary_values (dof_handler,
                                            0,
@@ -301,7 +748,8 @@ void LaplaceProblem<dim>::assemble_system ()
 };
 
 
-
+                                // Solving the system of equations is
+                                // done in the same way as before.
 template <int dim>
 void LaplaceProblem<dim>::solve () 
 {
@@ -355,8 +803,6 @@ void LaplaceProblem<dim>::refine_grid ()
 };
 
 
-#include <numerics/data_out.h>
-
 template <int dim>
 void LaplaceProblem<dim>::process_solution (const unsigned int cycle) const
 {
@@ -402,15 +848,105 @@ void LaplaceProblem<dim>::process_solution (const unsigned int cycle) const
 
 
 
+                                // The following function is the main
+                                // one which controls the flow of
+                                // execution. The basic layout is as
+                                // in previous examples: an outer
+                                // loop over successively refined
+                                // grids, and in this loop first
+                                // problem setup, assemblage of the
+                                // linear system, solution, and
+                                // postprocessing.
 template <int dim>
 void LaplaceProblem<dim>::run () 
 {
-  for (unsigned int cycle=0; cycle<12; ++cycle)
+  for (unsigned int cycle=0; cycle<9; ++cycle)
     {
+                                      // The first action in each
+                                      // iteration of the outer loop
+                                      // is setting up the grid on
+                                      // which we will solve in this
+                                      // iteration. In the first
+                                      // iteration, the coarsest grid
+                                      // is generated, in later
+                                      // iterations it is refined,
+                                      // for which we call the
+                                      // ``refine_grid'' function.
       if (cycle == 0)
        {
+                                          // Setting up the coarse
+                                          // grid is done as in
+                                          // previous examples: we
+                                          // first create an initial
+                                          // grid, which is the unit
+                                          // square [-1,1]x[-1,1] in
+                                          // the present case. Then
+                                          // we refine it globally a
+                                          // specific number of
+                                          // times.
          GridGenerator::hyper_cube (triangulation, -1, 1);
          triangulation.refine_global (1);
+
+                                          // However, here we have to
+                                          // do something else in
+                                          // addition: mark those
+                                          // faces that belong to the
+                                          // different components of
+                                          // the boundary, Gamma1 and
+                                          // Gamma2. We will use the
+                                          // following convention:
+                                          // Faces belonging to
+                                          // Gamma1 will have the
+                                          // boundary indicator ``0''
+                                          // (which is the default,
+                                          // so we don't have to set
+                                          // it explicitely), and
+                                          // faces belonging to
+                                          // Gamma2 will use ``1'' as
+                                          // boundary indicator.
+                                          //
+                                          // To set these values, we
+                                          // loop over all cells,
+                                          // then over all faces of a
+                                          // given cell, check
+                                          // whether it belongs to
+                                          // the boundary Gamma2, and
+                                          // if so set its boundary
+                                          // indicator to ``1''.
+                                          //
+                                          // It is worth noting that
+                                          // we have to loop over all
+                                          // cells here, not only the
+                                          // active ones. The reason
+                                          // is that upon refinement,
+                                          // newly created faces
+                                          // inherit the boundary
+                                          // indicator of their
+                                          // parent face. If we now
+                                          // only set the boundary
+                                          // indicator for active
+                                          // faces, coarsen some
+                                          // cells and refine them
+                                          // later on, they will
+                                          // again have the boundary
+                                          // indicator of the parent
+                                          // cell which we have not
+                                          // modified, instead of the
+                                          // one we
+                                          // intended. Therefore, we
+                                          // have to change the
+                                          // boundary indicators of
+                                          // all faces on Gamma2,
+                                          // irrespective whether
+                                          // they are active or not.
+         Triangulation<dim>::cell_iterator cell = triangulation.begin (),
+                                           endc = triangulation.end();
+         for (; cell!=endc; ++cell)
+           for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+             if ((cell->face(face)->center()(0) == -1)
+                 ||
+                 (cell->face(face)->center()(1) == -1))
+               cell->face(face)->set_boundary_indicator (1);
        }
       else
        refine_grid ();      
index 0caa12938f6e8b5e127ee82ffd02a9f95fead1dd..46b0754f774366d1c486c001e7fd858843952bf5 100644 (file)
@@ -1,6 +1,10 @@
 /* $Id$ */
 /* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
 
+                                // These first include files have all
+                                // been treated in previous examples,
+                                // so we won't explain what is in
+                                // them again.
 #include <base/quadrature_lib.h>
 #include <base/function.h>
 #include <base/logstream.h>
 #include <lac/vector_memory.h>
 #include <lac/precondition.h>
 #include <grid/tria.h>
-#include <dofs/dof_handler.h>
 #include <grid/grid_generator.h>
 #include <grid/tria_accessor.h>
 #include <grid/tria_iterator.h>
 #include <grid/tria_boundary_lib.h>
+#include <dofs/dof_handler.h>
+#include <dofs/dof_constraints.h>
 #include <dofs/dof_accessor.h>
 #include <dofs/dof_tools.h>
-#include <fe/fe_values.h>
-#include <numerics/vectors.h>
-#include <numerics/matrices.h>
 #include <fe/fe_lib.lagrange.h>
-#include <dofs/dof_constraints.h>
+#include <numerics/matrices.h>
 #include <numerics/error_estimator.h>
+#include <numerics/data_out.h>
 
+                                // In this example, we will not use
+                                // the numeration scheme which is
+                                // used per default by the
+                                // ``DoFHandler'' class, but will
+                                // renumber them using the
+                                // Cuthill-McKee algorithm. The
+                                // necessary functions are declared
+                                // in the following file:
 #include <numerics/dof_renumbering.h>
+                                // Then we will show a little trick
+                                // how we can make sure that objects
+                                // are not deleted while they are
+                                // still in use. For this purpose,
+                                // there is the ``SmartPointer''
+                                // helper class, which is declared in
+                                // this file:
 #include <base/smartpointer.h>
+                                // Then we will want to use the
+                                // ``integrate_difference'' function
+                                // mentioned in the introduction. It
+                                // comes from this file:
+#include <numerics/vectors.h>
+                                // And finally, we need to use the
+                                // ``FEFaceValues'' class, which is
+                                // declare in the same file as the
+                                // ``FEValues'' class:
+#include <fe/fe_values.h>
 
 #include <fstream>
 
 
-template <int dim>
-class LaplaceProblem 
-{
-  public:
-    enum RefinementMode {
-         global_refinement, adaptive_refinement
-    };
-    
-    LaplaceProblem (const FiniteElement<dim> &fe,
-                   const RefinementMode      refinement_mode);
-    ~LaplaceProblem ();
-    void run ();
-    
-  private:
-    void setup_system ();
-    void assemble_system ();
-    void solve ();
-    void refine_grid ();
-    void process_solution (const unsigned int cycle) const;
-
-    Triangulation<dim>                      triangulation;
-    DoFHandler<dim>                         dof_handler;
-                                    //...
-    SmartPointer<const FiniteElement<dim> > fe;
-    ConstraintMatrix                        hanging_node_constraints;
-
-    SparsityPattern                         sparsity_pattern;
-    SparseMatrix<double>                    system_matrix;
-
-    Vector<double>                          solution;
-    Vector<double>                          system_rhs;
-
-    RefinementMode                          refinement_mode;
-};
-
-
 
+                                // Since we want to compare the
+                                // exactly known continuous solution
+                                // to the computed one, we need a
+                                // function object which represents
+                                // the continuous solution. On the
+                                // other hand, we need the right hand
+                                // side function, and that one of
+                                // course shares some characteristics
+                                // with the solution. In order to
+                                // reduce dependencies which arise if
+                                // we have to change something in
+                                // both classes at the same time, we
+                                // exclude the common characteristics
+                                // of both functions into a base
+                                // class.
+                                //
+                                // The common characteristics for the
+                                // given solution, which as explained
+                                // in the introduction is a sum of
+                                // three exponentials, are here: the
+                                // number of exponentials, their
+                                // centers, and their half width. We
+                                // declare them in the following
+                                // class. Since the number of
+                                // exponentials is a constant scalar
+                                // integral quantity, C++ allows its
+                                // definition (i.e. assigning a
+                                // value) right at the place of
+                                // declaration (i.e. where we declare
+                                // that such a variable exists).
 template <int dim>
 class SolutionBase 
 {
@@ -78,30 +100,24 @@ class SolutionBase
 };
 
 
-template <int dim>
-class Solution : public Function<dim>,
-                protected SolutionBase<dim>
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
-                                   const unsigned int  component = 0) const;
-};
-
-
-
-template <int dim>
-class RightHandSide : public Function<dim>,
-                     protected SolutionBase<dim>
-{
-  public:
-    virtual double value (const Point<dim>   &p,
-                         const unsigned int  component = 0) const;
-};
-
-
-
+                                // The variables which denote the
+                                // centers and the width of the
+                                // exponentials have just been
+                                // declared, now we still need to
+                                // assign values to them. Here, we
+                                // can show another small piece of
+                                // template sourcery, namely how we
+                                // can assign different values to
+                                // these variables depending on the
+                                // dimension. We will only use the 2d
+                                // case in the program, but we show
+                                // the 1d case for exposition of a
+                                // useful technique.
+                                //
+                                // First we assign values to the
+                                // centers for the 1d case, where we
+                                // place the centers equidistanly at
+                                // -1/3, 0, and 1/3:
 template <>
 const Point<1>
 SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
@@ -109,6 +125,8 @@ SolutionBase<1>::source_centers[SolutionBase<1>::n_source_centers]
     Point<1>(0.0), 
     Point<1>(+1.0 / 3.0)   };
 
+                                // Then we place the centers for the
+                                // 2d case as follows:
 template <>
 const Point<2>
 SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
@@ -116,11 +134,56 @@ SolutionBase<2>::source_centers[SolutionBase<2>::n_source_centers]
     Point<2>(-0.5, -0.5), 
     Point<2>(+0.5, -0.5)   };
 
+                                // There remains to assign a value to
+                                // the half-width of the
+                                // exponentials. We would like to use
+                                // the same value for all dimensions,
+                                // so here is how that works:
 template <int dim>
-const double SolutionBase<dim>::width = 0.15;
-
+const double SolutionBase<dim>::width = 1./3.;
+
+
+
+                                // After declaring and defining the
+                                // characteristics of solution and
+                                // right hand side, we can declare
+                                // the classes representing these
+                                // two. They both represent
+                                // continuous functions, so they are
+                                // derived from the ``Function<dim>''
+                                // base class, and they also inherit
+                                // the characteristics defined in the
+                                // ``SolutionBase'' class.
+                                //
+                                // The actual classes are declared in
+                                // the following. Note that in order
+                                // to compute the error of the
+                                // numerical solution against the
+                                // continuous one in the L2 and H1
+                                // norms, we have to export value and
+                                // gradient of the exact solution,
+                                // which is done by overloading the
+                                // respective virtual member
+                                // functions in the ``Function'' base
+                                // class.
+template <int dim>
+class Solution : public Function<dim>,
+                protected SolutionBase<dim>
+{
+  public:
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
+                                   const unsigned int  component = 0) const;
+};
 
 
+                                // The actual definition of the
+                                // values and gradients of the exact
+                                // solution class is according to
+                                // their mathematical definition and
+                                // probably needs not much
+                                // explanation.
 template <int dim>
 double Solution<dim>::value (const Point<dim>   &p,
                             const unsigned int) const
@@ -128,8 +191,18 @@ double Solution<dim>::value (const Point<dim>   &p,
   double return_value = 0;
   for (unsigned int i=0; i<n_source_centers; ++i)
     {
+                                      // One of the few things worth
+                                      // mentioning is the following
+                                      // variables, which represents
+                                      // the vector (x-x_i). It is
+                                      // computed in the way that one
+                                      // would intuitively expect:
       const Point<dim> shifted_point = p-source_centers[i];
       
+                                      // The ``Point<dim>'' class
+                                      // offers a member function
+                                      // ``square'' that does what
+                                      // it's name suggests.
       return_value += exp(-shifted_point.square() / (width*width));
     };
   
@@ -142,11 +215,40 @@ template <int dim>
 Tensor<1,dim> Solution<dim>::gradient (const Point<dim>   &p,
                                       const unsigned int) const
 {
+                                  // In order to accumulate the
+                                  // gradient from the contributions
+                                  // of the exponentials, we allocate
+                                  // an object which denotes the
+                                  // mathematical quantity of a
+                                  // tensor of rank ``1'' and
+                                  // dimension ``dim''. Its default
+                                  // constructor sets it to the
+                                  // vector containing only zeroes,
+                                  // so we need not explicitely care
+                                  // for its initialization.
   Tensor<1,dim> return_value;
+                                  // Note that we could as well have
+                                  // taken the type of the object to
+                                  // be ``Point<dim>''. Tensors of
+                                  // rank 1 and points are almost
+                                  // exchangeable, and have only very
+                                  // slightly different mathematical
+                                  // meanings. In fact, the
+                                  // ``Point<dim>'' class is derived
+                                  // from the ``Tensor<1,dim>''
+                                  // class, which makes up for their
+                                  // mutual exchangeability.
+
   for (unsigned int i=0; i<n_source_centers; ++i)
     {
       const Point<dim> shifted_point = p-source_centers[i];
       
+                                      // For the gradient, note that
+                                      // it's direction is along
+                                      // (x-x_i), so we add up
+                                      // multiples of this distance
+                                      // vector, where the factor is
+                                      // given by the exponentials.
       return_value += (-2 / (width*width) *
                       exp(-shifted_point.square() / (width*width)) *
                       shifted_point);
@@ -157,6 +259,33 @@ Tensor<1,dim> Solution<dim>::gradient (const Point<dim>   &p,
 
 
 
+                                // Besides the function that
+                                // represents the exact solution, we
+                                // also need a function which we can
+                                // use as right hand side when
+                                // assembling the linear system of
+                                // discretized equations. This is
+                                // accomplished using the following
+                                // class and the following definition
+                                // of its function. Note that here we
+                                // only need the value of the
+                                // function, not its gradients or
+                                // higher derivatives.
+template <int dim>
+class RightHandSide : public Function<dim>,
+                     protected SolutionBase<dim>
+{
+  public:
+    virtual double value (const Point<dim>   &p,
+                         const unsigned int  component = 0) const;
+};
+
+
+                                // The value of the right hand side
+                                // is given by the negative Laplacian
+                                // of the solution plus the solution
+                                // itself, since we wanted to solve
+                                // Helmholtz's equation:
 template <int dim>
 double RightHandSide<dim>::value (const Point<dim>   &p,
                                  const unsigned int) const
@@ -166,8 +295,14 @@ double RightHandSide<dim>::value (const Point<dim>   &p,
     {
       const Point<dim> shifted_point = p-source_centers[i];
       
-      return_value += ((2*dim - 4*shifted_point.square()/(width*width)) / (width*width) *
+                                      // The first contribution is
+                                      // the Laplacian:
+      return_value += ((2*dim - 4*shifted_point.square()/(width*width)) / 
+                      (width*width) *
                       exp(-shifted_point.square() / (width*width)));
+                                      // And the second is the
+                                      // solution itself:
+      return_value += exp(-shifted_point.square() / (width*width));
     };
   
   return return_value;
@@ -175,6 +310,47 @@ double RightHandSide<dim>::value (const Point<dim>   &p,
 
 
 
+                                // Then we need the class that does
+                                // all the work.
+//.......................
+template <int dim>
+class LaplaceProblem 
+{
+  public:
+    enum RefinementMode {
+         global_refinement, adaptive_refinement
+    };
+    
+    LaplaceProblem (const FiniteElement<dim> &fe,
+                   const RefinementMode      refinement_mode);
+    ~LaplaceProblem ();
+    void run ();
+    
+  private:
+    void setup_system ();
+    void assemble_system ();
+    void solve ();
+    void refine_grid ();
+    void process_solution (const unsigned int cycle) const;
+
+    Triangulation<dim>                      triangulation;
+    DoFHandler<dim>                         dof_handler;
+                                    //...
+    SmartPointer<const FiniteElement<dim> > fe;
+    ConstraintMatrix                        hanging_node_constraints;
+
+    SparsityPattern                         sparsity_pattern;
+    SparseMatrix<double>                    system_matrix;
+
+    Vector<double>                          solution;
+    Vector<double>                          system_rhs;
+
+    RefinementMode                          refinement_mode;
+};
+
+
+
+
 template <int dim>
 LaplaceProblem<dim>::LaplaceProblem (const FiniteElement<dim> &fe,
                                     const RefinementMode refinement_mode) :
@@ -192,13 +368,42 @@ LaplaceProblem<dim>::~LaplaceProblem ()
 };
 
 
-
+                                // The following function sets up the
+                                // degrees of freedom, sizes of
+                                // matrices and vectors, etc. Most of
+                                // its functionality has been showed
+                                // in previous examples, the only
+                                // difference being the renumbering
+                                // step.
 template <int dim>
 void LaplaceProblem<dim>::setup_system ()
 {
   dof_handler.distribute_dofs (*fe);
-                                  // Renumber the degrees of freedom...
+                                  // Renumbering the degrees of
+                                  // freedom is not overly difficult,
+                                  // as long as you use one of the
+                                  // algorithms included in the
+                                  // library. It requires just one
+                                  // line of code, namely the
+                                  // following:
   DoFRenumbering::Cuthill_McKee (dof_handler);
+                                  // Note, however, that when you
+                                  // renumber the degrees of freedom,
+                                  // you must do so immediately after
+                                  // distributing them, since such
+                                  // things as hanging nodes, the
+                                  // sparsity pattern etc. depend on
+                                  // the absolute numbers which are
+                                  // altered by renumbering.
+                                  //
+                                  // Renumbering does not serve any
+                                  // specific purpose in this
+                                  // example, it is done only for
+                                  // exposition of the technique. To
+                                  // see the effect of renumbering on
+                                  // the sparsity pattern of the
+                                  // matrix, refer to the second
+                                  // example program.
 
   hanging_node_constraints.clear ();
   DoFTools::make_hanging_node_constraints (dof_handler,
@@ -220,19 +425,101 @@ void LaplaceProblem<dim>::setup_system ()
 
 
 
+                                // Assembling the system of equations
+                                // for the problem at hand is mostly
+                                // as for the example programs
+                                // before. However, some things have
+                                // changed anyway, so we comment on
+                                // this function fairly extensively.
 template <int dim>
 void LaplaceProblem<dim>::assemble_system () 
 {  
-  QGauss3<dim>  quadrature_formula;
-  FEValues<dim> fe_values (*fe, quadrature_formula, 
-                          UpdateFlags(update_values    |
-                                      update_gradients |
-                                      update_q_points  |
-                                      update_JxW_values));
-
+                                  // First we need to define objects
+                                  // which will be used as quadrature
+                                  // formula for domain and face
+                                  // integrals.
+                                  //
+                                  // Note the way in which we define
+                                  // a quadrature rule for the faces:
+                                  // it is simply a quadrature rule
+                                  // for one dimension less!
+  QGauss3<dim>   quadrature_formula;
+  QGauss3<dim-1> face_quadrature_formula;
+                                  // For simpler use later on, we
+                                  // alias the number of quadrature
+                                  // points to local variables:
+  const unsigned int n_q_points    = quadrature_formula.n_quadrature_points;
+  const unsigned int n_face_q_points = face_quadrature_formula.n_quadrature_points;
+  
+                                  // Then we need objects which can
+                                  // evaluate the values, gradients,
+                                  // etc of the shape functions at
+                                  // the quadrature points. While it
+                                  // seems that it should be feasible
+                                  // to do it with one object for
+                                  // both domain and face integrals,
+                                  // there is a subtle difference
+                                  // since the weights in the domain
+                                  // integrals include the measure of
+                                  // the cell in the domain, while
+                                  // the face integral quadrature
+                                  // requires the measure of the face
+                                  // in a lower-dimensional
+                                  // mannifold. Internally these two
+                                  // classes are rooted on a common
+                                  // base class which does most of
+                                  // the work; that, however, is
+                                  // something that you need not
+                                  // worry about.
+                                  //
+                                  // For the domain integrals in the
+                                  // bilinear form for Helmholtz's
+                                  // equation, we need to compute the
+                                  // values and gradients, as well as
+                                  // the weights at the quadrature
+                                  // points. Furthermore, we need the
+                                  // quadrature points on the real
+                                  // cell (rather than on the unit
+                                  // cell) to evaluate the right hand
+                                  // side function.
+  FEValues<dim>  fe_values (*fe, quadrature_formula, 
+                           UpdateFlags(update_values    |
+                                       update_gradients |
+                                       update_q_points  |
+                                       update_JxW_values));
+
+                                  // For the face integrals, we only
+                                  // need the values of the shape
+                                  // functions, as well as the
+                                  // weights. We also need the normal
+                                  // vectors and quadrature points on
+                                  // the real cell since we want to
+                                  // determine the Neumann values
+                                  // from the exact solution object
+                                  // (see below).
+  FEFaceValues<dim> fe_face_values (*fe, face_quadrature_formula, 
+                                   UpdateFlags(update_values         |
+                                               update_q_points       |
+                                               update_normal_vectors |
+                                               update_JxW_values));
+
+                                  // In order to make programming
+                                  // more readable below, we alias
+                                  // the number of degrees of freedom
+                                  // per cell to a local variable, as
+                                  // already done for the number of
+                                  // quadrature points above:
   const unsigned int   dofs_per_cell = fe->dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.n_quadrature_points;
 
+                                  // Then we need some objects
+                                  // already known from previous
+                                  // examples: An object denoting the
+                                  // right hand side function, its
+                                  // values at the quadrature points
+                                  // on a cell, the cell matrix and
+                                  // right hand side, and the indices
+                                  // of the degrees of freedom on a
+                                  // cell.
   RightHandSide<dim>   right_hand_side;
   vector<double>       rhs_values (n_q_points);
 
@@ -241,6 +528,28 @@ void LaplaceProblem<dim>::assemble_system ()
 
   vector<unsigned int> local_dof_indices (dofs_per_cell);
 
+                                  // Then we define an object
+                                  // denoting the exact solution
+                                  // function. We will use it to
+                                  // compute the Neumann values at
+                                  // the boundary from it. Usually,
+                                  // one would of course do so using
+                                  // a separate object, in particular
+                                  // since the exact solution is not
+                                  // known while the Neumann values
+                                  // are prescribed. We will,
+                                  // however, be a little bit lazy
+                                  // and use what we already have in
+                                  // information. Real-life programs
+                                  // would to go other ways here, of
+                                  // course.
+  Solution<dim> exact_solution;
+
+                                  // Now for the main loop over all
+                                  // cells. This is mostly unchanged
+                                  // from previous examples, so we
+                                  // only comment on the things that
+                                  // have changed.
   DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(),
                                        endc = dof_handler.end();
   for (; cell!=endc; ++cell)
@@ -264,16 +573,134 @@ void LaplaceProblem<dim>::assemble_system ()
        for (unsigned int i=0; i<dofs_per_cell; ++i)
          {
            for (unsigned int j=0; j<dofs_per_cell; ++j)
-             cell_matrix(i,j) += (shape_grads[i][q_point] *
-                                  shape_grads[j][q_point] *
-                                  JxW_values[q_point]);
+                                              // The first thing that
+                                              // has changed is the
+                                              // bilinear form. It
+                                              // now contains the
+                                              // additional term from
+                                              // the Helmholtz
+                                              // equation, namely the
+                                              // scalar products of
+                                              // the two function
+                                              // values, rather than
+                                              // their gradients,
+                                              // which is the second
+                                              // term below:
+             cell_matrix(i,j) += ((shape_grads[i][q_point] *
+                                   shape_grads[j][q_point] *
+                                   JxW_values[q_point])
+                                  +
+                                  (shape_values(i,q_point) *
+                                   shape_values(j,q_point) *
+                                   JxW_values[q_point]));
 
            cell_rhs(i) += (shape_values (i,q_point) *
                            rhs_values [q_point] *
                            fe_values.JxW (q_point));
          };
 
+                                      // Then there is that second
+                                      // term on the right hand side,
+                                      // the contour integral. First
+                                      // we have to find out whether
+                                      // the intersection of the face
+                                      // of this cell with the
+                                      // boundary part Gamma2 is
+                                      // nonzero. To this end, we
+                                      // loop over all faces and
+                                      // check whether its boundary
+                                      // indicator equals ``1'',
+                                      // which is the value that we
+                                      // have assigned to that
+                                      // portions of the boundary
+                                      // composing Gamma2 in a
+                                      // function further below. The
+                                      // default value of boundary
+                                      // indicators is ``0'' for
+                                      // external faces, and ``255''
+                                      // for internal faces (the
+                                      // latter value should never be
+                                      // changed, and there is also
+                                      // no need to do so), so faces
+                                      // can only have an indicator
+                                      // equal to ``1'' if we have
+                                      // explicitely set it.
+      for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+       if (cell->face(face)->boundary_indicator() == 1)
+         {
+                                            // If we came into here,
+                                            // then we have found an
+                                            // external face
+                                            // belonging to
+                                            // Gamma2. Next, we have
+                                            // to compute the values
+                                            // of the shape functions
+                                            // and the other
+                                            // quantities which we
+                                            // will need for the
+                                            // computation of the
+                                            // contour integral. This
+                                            // is done using the
+                                            // ``reinit'' function
+                                            // which we already know
+                                            // from the ``FEValue''
+                                            // class:
+           fe_face_values.reinit (cell, face);
+
+                                            // Then, for simpler
+                                            // access, we alias the
+                                            // various quantities to
+                                            // local variables:
+           const FullMatrix<double> 
+             & face_shape_values   = fe_face_values.get_shape_values();
+           const vector<double>
+             & face_JxW_values     = fe_face_values.get_JxW_values();
+           const vector<Point<dim> >
+             & face_q_points       = fe_face_values.get_quadrature_points();
+           const vector<Point<dim> >
+             & face_normal_vectors = fe_face_values.get_normal_vectors ();
+
+                                            // And we can then
+                                            // perform the
+                                            // integration by using a
+                                            // loop over all
+                                            // quadrature points.
+           for (unsigned int q_point=0; q_point<n_face_q_points; ++q_point)
+             {
+                                                // On each quadrature
+                                                // point, we first
+                                                // compute the value
+                                                // of the normal
+                                                // derivative. We do
+                                                // so using the
+                                                // gradient of the
+                                                // exact solution and
+                                                // the normal vector
+                                                // to the face at the
+                                                // present quadrature
+                                                // point:
+               const double neumann_value
+                 = (exact_solution.gradient (face_q_points[q_point]) *
+                    face_normal_vectors[q_point]);
+
+                                                // Using this, we can
+                                                // compute the
+                                                // contribution of
+                                                // this face for each
+                                                // shape function:
+               for (unsigned int i=0; i<dofs_per_cell; ++i)
+                 cell_rhs(i) += (neumann_value *
+                                 face_shape_values(i,q_point) *
+                                 face_JxW_values[q_point]);
+             };
+         };
 
+                                      // Now that we have the
+                                      // contributions of the present
+                                      // cell, we can transfer it to
+                                      // the global matrix and right
+                                      // hand side vector, as in the
+                                      // examples before.
       cell->get_dof_indices (local_dof_indices);
       for (unsigned int i=0; i<dofs_per_cell; ++i)
        {
@@ -286,9 +713,29 @@ void LaplaceProblem<dim>::assemble_system ()
        };
     };
 
+                                  // The rest of the function has
+                                  // also been shown previously:
   hanging_node_constraints.condense (system_matrix);
   hanging_node_constraints.condense (system_rhs);
 
+                                  // Only with the interpolation of
+                                  // boundary values, there is one
+                                  // notable thing, namely that now
+                                  // the boundary indicator for which
+                                  // we interpolate boundary values
+                                  // (denoted by the second parameter
+                                  // to
+                                  // ``interpolate_boundary_values'')
+                                  // does not represent the whole
+                                  // boundary an more. Rather, it is
+                                  // that portion of the boundary
+                                  // which we have not assigned
+                                  // another indicator (see
+                                  // below). The degrees of freedom
+                                  // at the boundary that do not
+                                  // belong to Gamma1 are therefore
+                                  // excluded from the interpolation
+                                  // of boundary values.
   map<unsigned int,double> boundary_values;
   VectorTools::interpolate_boundary_values (dof_handler,
                                            0,
@@ -301,7 +748,8 @@ void LaplaceProblem<dim>::assemble_system ()
 };
 
 
-
+                                // Solving the system of equations is
+                                // done in the same way as before.
 template <int dim>
 void LaplaceProblem<dim>::solve () 
 {
@@ -355,8 +803,6 @@ void LaplaceProblem<dim>::refine_grid ()
 };
 
 
-#include <numerics/data_out.h>
-
 template <int dim>
 void LaplaceProblem<dim>::process_solution (const unsigned int cycle) const
 {
@@ -402,15 +848,105 @@ void LaplaceProblem<dim>::process_solution (const unsigned int cycle) const
 
 
 
+                                // The following function is the main
+                                // one which controls the flow of
+                                // execution. The basic layout is as
+                                // in previous examples: an outer
+                                // loop over successively refined
+                                // grids, and in this loop first
+                                // problem setup, assemblage of the
+                                // linear system, solution, and
+                                // postprocessing.
 template <int dim>
 void LaplaceProblem<dim>::run () 
 {
-  for (unsigned int cycle=0; cycle<12; ++cycle)
+  for (unsigned int cycle=0; cycle<9; ++cycle)
     {
+                                      // The first action in each
+                                      // iteration of the outer loop
+                                      // is setting up the grid on
+                                      // which we will solve in this
+                                      // iteration. In the first
+                                      // iteration, the coarsest grid
+                                      // is generated, in later
+                                      // iterations it is refined,
+                                      // for which we call the
+                                      // ``refine_grid'' function.
       if (cycle == 0)
        {
+                                          // Setting up the coarse
+                                          // grid is done as in
+                                          // previous examples: we
+                                          // first create an initial
+                                          // grid, which is the unit
+                                          // square [-1,1]x[-1,1] in
+                                          // the present case. Then
+                                          // we refine it globally a
+                                          // specific number of
+                                          // times.
          GridGenerator::hyper_cube (triangulation, -1, 1);
          triangulation.refine_global (1);
+
+                                          // However, here we have to
+                                          // do something else in
+                                          // addition: mark those
+                                          // faces that belong to the
+                                          // different components of
+                                          // the boundary, Gamma1 and
+                                          // Gamma2. We will use the
+                                          // following convention:
+                                          // Faces belonging to
+                                          // Gamma1 will have the
+                                          // boundary indicator ``0''
+                                          // (which is the default,
+                                          // so we don't have to set
+                                          // it explicitely), and
+                                          // faces belonging to
+                                          // Gamma2 will use ``1'' as
+                                          // boundary indicator.
+                                          //
+                                          // To set these values, we
+                                          // loop over all cells,
+                                          // then over all faces of a
+                                          // given cell, check
+                                          // whether it belongs to
+                                          // the boundary Gamma2, and
+                                          // if so set its boundary
+                                          // indicator to ``1''.
+                                          //
+                                          // It is worth noting that
+                                          // we have to loop over all
+                                          // cells here, not only the
+                                          // active ones. The reason
+                                          // is that upon refinement,
+                                          // newly created faces
+                                          // inherit the boundary
+                                          // indicator of their
+                                          // parent face. If we now
+                                          // only set the boundary
+                                          // indicator for active
+                                          // faces, coarsen some
+                                          // cells and refine them
+                                          // later on, they will
+                                          // again have the boundary
+                                          // indicator of the parent
+                                          // cell which we have not
+                                          // modified, instead of the
+                                          // one we
+                                          // intended. Therefore, we
+                                          // have to change the
+                                          // boundary indicators of
+                                          // all faces on Gamma2,
+                                          // irrespective whether
+                                          // they are active or not.
+         Triangulation<dim>::cell_iterator cell = triangulation.begin (),
+                                           endc = triangulation.end();
+         for (; cell!=endc; ++cell)
+           for (unsigned int face=0; face<GeometryInfo<dim>::faces_per_cell; ++face)
+             if ((cell->face(face)->center()(0) == -1)
+                 ||
+                 (cell->face(face)->center()(1) == -1))
+               cell->face(face)->set_boundary_indicator (1);
        }
       else
        refine_grid ();      

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.