const unsigned int component = 0) const;
/**
- * Return the jump in the Hessian $[\nabla^2 u] = \nabla^2 u_{\text{cell0}} -
- * \nabla^2 u_{\text{cell1}}$ on the interface for the shape function
+ * Return the jump in the Hessian $\jump{\nabla^2 u} = \nabla^2
+ * u_{\text{cell0}} - \nabla^2 u_{\text{cell1}}$ on the interface for the
+ * shape function
* @p interface_dof_index at the quadrature point @p q_point of component
* @p component.
*
* If this is a boundary face (at_boundary() returns true), then
- * $[\nabla^2 u] = \nabla^2 u_{\text{cell0}}$.
+ * $\jump{\nabla^2 u} = \nabla^2 u_{\text{cell0}}$.
*/
Tensor<2, dim>
jump_hessian(const unsigned int interface_dof_index,
const unsigned int component = 0) const;
/**
- * Return the jump in the third derivative $[\nabla^3 u] = \nabla^3
+ * Return the jump in the third derivative $\jump{\nabla^3 u} = \nabla^3
* u_{\text{cell0}} - \nabla^3 u_{\text{cell1}}$ on the interface for the
* shape function @p interface_dof_index at the quadrature point @p q_point of
* component @p component.
*
* If this is a boundary face (at_boundary() returns true), then
- * $[\nabla^3 u] = \nabla^3 u_{\text{cell0}}$.
+ * $\jump{\nabla^3 u} = \nabla^3 u_{\text{cell0}}$.
*/
Tensor<3, dim>
jump_3rd_derivative(const unsigned int interface_dof_index,