]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Escape 'identity'.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 23 Sep 2009 18:15:28 +0000 (18:15 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Wed, 23 Sep 2009 18:15:28 +0000 (18:15 +0000)
git-svn-id: https://svn.dealii.org/trunk@19511 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-34/doc/intro.dox

index a8a93064d59bd23d022f588bacbdf4e8da530030..d09e079ec36fadc6a75cedde49a8e996670e3d22 100644 (file)
@@ -142,7 +142,7 @@ satisfy in a distributional sense the equation:
 where the derivative is done in the variable $\mathbf{y}$. By using
 the usual Green identities, our problem can be written on the boundary
 $\partial\Omega = \Gamma$ only. We recall the general definition of
-the second Green identity:
+the second Green %identity:
 
 \f[\label{green}
   \int_{\omega}
@@ -168,7 +168,7 @@ $\Omega$, that is, they are in fact <i>inner</i> to the integration
 domain, and some care is required in defining the various integrals
 with the correct signs for the normals.
 
-If we substitute $u$ and $v$ in the Green identity with the solution
+If we substitute $u$ and $v$ in the Green %identity with the solution
 $\phi$ and with the fundamental solution of the Laplace equation
 respectively, as long as $\mathbf{x}$ is chosen in the region
 $\mathbb{R}^n\backslash\Omega$, we obtain:

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.