]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
Extend example by a function with a kink (discontinuity of the gradient).
authorwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 12 May 1998 13:34:11 +0000 (13:34 +0000)
committerwolf <wolf@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 12 May 1998 13:34:11 +0000 (13:34 +0000)
git-svn-id: https://svn.dealii.org/trunk@281 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm [new file with mode: 0644]
deal.II/deal.II/Attic/examples/error-estimation/error-estimation.cc
deal.II/deal.II/Attic/examples/error-estimation/make_ps
tests/big-tests/error-estimation/ee.kink.prm [new file with mode: 0644]
tests/big-tests/error-estimation/error-estimation.cc
tests/big-tests/error-estimation/make_ps

diff --git a/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm b/deal.II/deal.II/Attic/examples/error-estimation/ee.kink.prm
new file mode 100644 (file)
index 0000000..5a3c544
--- /dev/null
@@ -0,0 +1,7 @@
+set Test case            = Kink
+set Initial refinement   = 1
+set Refinement criterion = { global | estimated error }
+set Refinement fraction  = 0.1
+set Maximum cells        = 30000
+set Output base filename = data-kink/
+set Output format        = ucd
index 18c19ef5d5cb8666865a9b963151c5aacb89ac07..6f055f91e2f7e818726ded51d9fed68f36bc5b10 100644 (file)
@@ -30,7 +30,16 @@ class PoissonEquation :  public Equation<dim> {
   public:
     PoissonEquation (const Function<dim> &rhs) :
                    Equation<dim>(1),
-                   right_hand_side (rhs)  {};
+                   right_hand_side (rhs),
+                   coefficient (default_coefficient),
+                   use_coefficient(false) {};
+
+    PoissonEquation (const Function<dim> &rhs,
+                    const Function<dim> &coefficient ) :
+                   Equation<dim>(1),
+                   right_hand_side (rhs),
+                   coefficient (coefficient),
+                   use_coefficient(true) {};
 
     virtual void assemble (dFMatrix            &cell_matrix,
                           dVector             &rhs,
@@ -43,24 +52,29 @@ class PoissonEquation :  public Equation<dim> {
                           const FEValues<dim> &fe_values,
                           const Triangulation<dim>::cell_iterator &cell) const;
   protected:
+    const bool           use_coefficient;
     const Function<dim> &right_hand_side;
+    const Function<dim> &coefficient;
+
+    static const ConstantFunction<dim> default_coefficient;
 };
 
 
+const ConstantFunction<2> PoissonEquation<2>::default_coefficient(1);
+
 
 
 
 
 template <int dim>
-class PoissonProblem : public ProblemBase<dim>,
-                      public MultipleParameterLoop::UserClass {
+class PoissonProblem : public ProblemBase<dim>, public MultipleParameterLoop::UserClass {
   public:
     enum RefineMode {
          global, true_error, error_estimator
     };
     
     PoissonProblem ();
-
+    
     void clear ();
     void create_new (const unsigned int);
     void declare_parameters (ParameterHandler &prm);
@@ -74,7 +88,8 @@ class PoissonProblem : public ProblemBase<dim>,
     
     Function<dim>      *rhs;
     Function<dim>      *solution_function;
-
+    Function<dim>      *coefficient;
+                          
     Boundary<dim>      *boundary;
     
     vector<double> l2_error, linfty_error;
@@ -101,6 +116,17 @@ class Solution {
        virtual double operator () (const Point<dim> &p) const;
        virtual Point<dim> gradient (const Point<dim> &p) const;
     };
+
+    class Kink : public Function<dim> {
+      public:
+       class Coefficient : public Function<dim> {
+         public:
+           virtual double operator () (const Point<dim> &p) const;
+       };
+       
+       virtual double operator () (const Point<dim> &p) const;
+       virtual Point<dim> gradient (const Point<dim> &p) const;
+    };
 };
 
 
@@ -123,11 +149,22 @@ class RHS {
                                     /**
                                      * Right hand side constructed such that
                                      * the exact solution is
-                                     * $r^{2/3} sin(2\phi)$.
+                                     * $r^{2/3}$.
                                      */
     class Singular : public Function<dim> {
       public:
        virtual double operator () (const Point<dim> &p) const;
+    };
+
+                                    /**
+                                     * Right hand side constructed such that
+                                     * the exact solution is
+                                     * $(1+4\theta(f))*f$ with
+                                     * $f=y-x**2$.
+                                     */
+    class Kink : public Function<dim> {
+      public:
+       virtual double operator () (const Point<dim> &p) const;
     };
 };
 
@@ -158,17 +195,46 @@ Point<2> Solution<2>::Singular::gradient (const Point<2> &p) const {
 
 
 
+
+inline double theta(const double x) {
+  return (x>0 ? 1 : 0);
+};
+
+
+double Solution<2>::Kink::operator () (const Point<2> &p) const {
+  const double s = p(1)-p(0)*p(0);
+  return (1+4*theta(s))*s;
+};
+
+
+Point<2> Solution<2>::Kink::gradient (const Point<2> &p) const {
+  const double s = p(1)-p(0)*p(0);
+  return (1+4*theta(s))*Point<2>(-2*p(0),1);
+};
+
+
+double Solution<2>::Kink::Coefficient::operator () (const Point<2> &p) const {
+  const double s = p(1)-p(0)*p(0);
+  return 1./(1.+4.*theta(s));
+};
+
+
+
 double RHS<2>::GaussShape::operator () (const Point<2> &p) const {
   return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square());
 };
 
 
-
 double RHS<2>::Singular::operator () (const Point<2> &p) const {
   return -4./9. * pow(p.square(), -2./3.);
 };
 
 
+double RHS<2>::Kink::operator () (const Point<2> &) const {
+  return 2;
+};
+
+
 
 
   
@@ -180,17 +246,23 @@ void PoissonEquation<2>::assemble (dFMatrix            &cell_matrix,
                                   dVector             &rhs,
                                   const FEValues<2>   &fe_values,
                                   const Triangulation<2>::cell_iterator &) const {
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<fe_values.total_dofs; ++i) 
-      {
-       for (unsigned int j=0; j<fe_values.total_dofs; ++j)
-         cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                              fe_values.shape_grad(j,point)) *
-                             fe_values.JxW(point);
-       rhs(i) += fe_values.shape_value(i,point) *
-                 right_hand_side(fe_values.quadrature_point(point)) *
-                 fe_values.JxW(point);
-      };
+  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point) 
+    {
+      const double c = (use_coefficient ?
+                       coefficient(fe_values.quadrature_point(point)) :
+                       1);
+      for (unsigned int i=0; i<fe_values.total_dofs; ++i) 
+       {
+         for (unsigned int j=0; j<fe_values.total_dofs; ++j)
+           cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
+                                fe_values.shape_grad(j,point)) *
+                               fe_values.JxW(point) *
+                               c;
+         rhs(i) += fe_values.shape_value(i,point) *
+                   right_hand_side(fe_values.quadrature_point(point)) *
+                   fe_values.JxW(point);
+       };
+    };
 };
 
 
@@ -222,40 +294,20 @@ void PoissonEquation<dim>::assemble (dVector             &,
 template <int dim>
 PoissonProblem<dim>::PoissonProblem () :
                tria(0), dof(0), rhs(0),
-               solution_function(0), boundary(0) {};
+               solution_function(0), coefficient(0),
+               boundary(0) {};
 
 
 
 
 template <int dim>
 void PoissonProblem<dim>::clear () {
-  if (tria != 0) {
-    delete tria;
-    tria = 0;
-  };
-  
-  if (dof != 0) {
-    delete dof;
-    dof = 0;
-  };
-
-  if (rhs != 0) 
-    {
-      delete rhs;
-      rhs = 0;
-    };
-
-  if (solution_function != 0) 
-    {
-      delete solution_function;
-      solution_function = 0;
-    };
-
-  if (boundary != 0)
-    {
-      delete boundary;
-      boundary = 0;
-    };
+  if (tria != 0)              { delete tria;              tria = 0;              };
+  if (dof != 0)               { delete dof;               dof = 0;               };
+  if (rhs != 0)               { delete rhs;               rhs = 0;               };
+  if (solution_function != 0) { delete solution_function; solution_function = 0; };
+  if (coefficient != 0)       { delete coefficient;       coefficient = 0;       };
+  if (boundary != 0)          { delete boundary;          boundary = 0;          };
   
   l2_error.clear ();
   linfty_error.clear ();
@@ -283,7 +335,8 @@ void PoissonProblem<dim>::create_new (const unsigned int) {
 
 template <int dim>
 void PoissonProblem<dim>::declare_parameters (ParameterHandler &prm) {
-  prm.declare_entry ("Test case", "Gauss shape", "Gauss shape\\|Singular");
+  prm.declare_entry ("Test case", "Gauss shape",
+                    "Gauss shape\\|Singular\\|Kink");
   prm.declare_entry ("Initial refinement", "2",
                     ParameterHandler::RegularExpressions::Integer);
   prm.declare_entry ("Refinement criterion", "estimated error",
@@ -345,17 +398,29 @@ void PoissonProblem<dim>::run (ParameterHandler &prm) {
   else
     if (prm.get("Test case")=="Singular")
       rhs             = new RHS<dim>::Singular();
+    else
+      if (prm.get("Test case")=="Kink")
+       rhs             = new RHS<dim>::Kink();
   
   if (prm.get("Test case")=="Gauss shape")
     solution_function = new Solution<dim>::GaussShape ();
   else
     if (prm.get("Test case")=="Singular")
       solution_function = new Solution<dim>::Singular ();
+    else
+      if (prm.get("Test case")=="Kink")
+       solution_function = new Solution<dim>::Kink ();
   
   
-  FELinear<dim>                   fe;
-  PoissonEquation<dim>            equation (*rhs);
-  QGauss3<dim>                    quadrature;
+  FELinear<dim>         fe;
+  QGauss3<dim>          quadrature;
+  PoissonEquation<dim> *equation;
+  
+  static Solution<dim>::Kink::Coefficient kink_coefficient;
+  if (prm.get("Test case")=="Kink")
+    equation = new PoissonEquation<dim>(*rhs, kink_coefficient);
+  else
+    equation = new PoissonEquation<dim>(*rhs);
 
   unsigned int refine_step = 0;
   const unsigned int max_cells = prm.get_integer("Maximum cells");
@@ -376,7 +441,7 @@ void PoissonProblem<dim>::run (ParameterHandler &prm) {
   
       ProblemBase<dim>::FunctionMap dirichlet_bc;
       dirichlet_bc[0] = solution_function;
-      assemble (equation, quadrature, fe, update_flags, dirichlet_bc);
+      assemble (*equation, quadrature, fe, update_flags, dirichlet_bc);
 
       cout << "    Solving..." << endl;
       solve ();
@@ -485,6 +550,8 @@ void PoissonProblem<dim>::run (ParameterHandler &prm) {
   
   print_history (prm, refine_mode);
   cout << endl << endl << endl;
+
+  delete equation;
 };
 
 
index 38d05f569a0d3389d5bbd6faf73025aa022460fd..06340e21a437447387a996450910bb0a38a6f00c 100644 (file)
@@ -41,3 +41,22 @@ plot "data-singular/history.estimated_error.gnuplot" using 1:2 title "L2 error",
 
 set output "data-singular/history.compare.eps"
 plot "data-singular/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-singular/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", "data-singular/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-singular/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error"
+
+
+
+
+
+
+
+set output "data-kink/history.global.eps"
+
+plot "data-kink/history.global.gnuplot" using 1:2 title "L2 error","data-kink/history.global.gnuplot" using 1:3 title "Linfty error","data-kink/history.global.gnuplot" using 1:4 title "H1 error","data-kink/history.global.gnuplot" using 1:5 title "Estimated H1 error"
+
+
+set output "data-kink/history.estimated_error.eps"
+
+plot "data-kink/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-kink/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-kink/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-kink/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
+
+
+set output "data-kink/history.compare.eps"
+plot "data-kink/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-kink/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", "data-kink/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-kink/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error"
diff --git a/tests/big-tests/error-estimation/ee.kink.prm b/tests/big-tests/error-estimation/ee.kink.prm
new file mode 100644 (file)
index 0000000..5a3c544
--- /dev/null
@@ -0,0 +1,7 @@
+set Test case            = Kink
+set Initial refinement   = 1
+set Refinement criterion = { global | estimated error }
+set Refinement fraction  = 0.1
+set Maximum cells        = 30000
+set Output base filename = data-kink/
+set Output format        = ucd
index 18c19ef5d5cb8666865a9b963151c5aacb89ac07..6f055f91e2f7e818726ded51d9fed68f36bc5b10 100644 (file)
@@ -30,7 +30,16 @@ class PoissonEquation :  public Equation<dim> {
   public:
     PoissonEquation (const Function<dim> &rhs) :
                    Equation<dim>(1),
-                   right_hand_side (rhs)  {};
+                   right_hand_side (rhs),
+                   coefficient (default_coefficient),
+                   use_coefficient(false) {};
+
+    PoissonEquation (const Function<dim> &rhs,
+                    const Function<dim> &coefficient ) :
+                   Equation<dim>(1),
+                   right_hand_side (rhs),
+                   coefficient (coefficient),
+                   use_coefficient(true) {};
 
     virtual void assemble (dFMatrix            &cell_matrix,
                           dVector             &rhs,
@@ -43,24 +52,29 @@ class PoissonEquation :  public Equation<dim> {
                           const FEValues<dim> &fe_values,
                           const Triangulation<dim>::cell_iterator &cell) const;
   protected:
+    const bool           use_coefficient;
     const Function<dim> &right_hand_side;
+    const Function<dim> &coefficient;
+
+    static const ConstantFunction<dim> default_coefficient;
 };
 
 
+const ConstantFunction<2> PoissonEquation<2>::default_coefficient(1);
+
 
 
 
 
 template <int dim>
-class PoissonProblem : public ProblemBase<dim>,
-                      public MultipleParameterLoop::UserClass {
+class PoissonProblem : public ProblemBase<dim>, public MultipleParameterLoop::UserClass {
   public:
     enum RefineMode {
          global, true_error, error_estimator
     };
     
     PoissonProblem ();
-
+    
     void clear ();
     void create_new (const unsigned int);
     void declare_parameters (ParameterHandler &prm);
@@ -74,7 +88,8 @@ class PoissonProblem : public ProblemBase<dim>,
     
     Function<dim>      *rhs;
     Function<dim>      *solution_function;
-
+    Function<dim>      *coefficient;
+                          
     Boundary<dim>      *boundary;
     
     vector<double> l2_error, linfty_error;
@@ -101,6 +116,17 @@ class Solution {
        virtual double operator () (const Point<dim> &p) const;
        virtual Point<dim> gradient (const Point<dim> &p) const;
     };
+
+    class Kink : public Function<dim> {
+      public:
+       class Coefficient : public Function<dim> {
+         public:
+           virtual double operator () (const Point<dim> &p) const;
+       };
+       
+       virtual double operator () (const Point<dim> &p) const;
+       virtual Point<dim> gradient (const Point<dim> &p) const;
+    };
 };
 
 
@@ -123,11 +149,22 @@ class RHS {
                                     /**
                                      * Right hand side constructed such that
                                      * the exact solution is
-                                     * $r^{2/3} sin(2\phi)$.
+                                     * $r^{2/3}$.
                                      */
     class Singular : public Function<dim> {
       public:
        virtual double operator () (const Point<dim> &p) const;
+    };
+
+                                    /**
+                                     * Right hand side constructed such that
+                                     * the exact solution is
+                                     * $(1+4\theta(f))*f$ with
+                                     * $f=y-x**2$.
+                                     */
+    class Kink : public Function<dim> {
+      public:
+       virtual double operator () (const Point<dim> &p) const;
     };
 };
 
@@ -158,17 +195,46 @@ Point<2> Solution<2>::Singular::gradient (const Point<2> &p) const {
 
 
 
+
+inline double theta(const double x) {
+  return (x>0 ? 1 : 0);
+};
+
+
+double Solution<2>::Kink::operator () (const Point<2> &p) const {
+  const double s = p(1)-p(0)*p(0);
+  return (1+4*theta(s))*s;
+};
+
+
+Point<2> Solution<2>::Kink::gradient (const Point<2> &p) const {
+  const double s = p(1)-p(0)*p(0);
+  return (1+4*theta(s))*Point<2>(-2*p(0),1);
+};
+
+
+double Solution<2>::Kink::Coefficient::operator () (const Point<2> &p) const {
+  const double s = p(1)-p(0)*p(0);
+  return 1./(1.+4.*theta(s));
+};
+
+
+
 double RHS<2>::GaussShape::operator () (const Point<2> &p) const {
   return (480.-6400.*p.square())*p(0)*p(1)*exp(-40.*p.square());
 };
 
 
-
 double RHS<2>::Singular::operator () (const Point<2> &p) const {
   return -4./9. * pow(p.square(), -2./3.);
 };
 
 
+double RHS<2>::Kink::operator () (const Point<2> &) const {
+  return 2;
+};
+
+
 
 
   
@@ -180,17 +246,23 @@ void PoissonEquation<2>::assemble (dFMatrix            &cell_matrix,
                                   dVector             &rhs,
                                   const FEValues<2>   &fe_values,
                                   const Triangulation<2>::cell_iterator &) const {
-  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point)
-    for (unsigned int i=0; i<fe_values.total_dofs; ++i) 
-      {
-       for (unsigned int j=0; j<fe_values.total_dofs; ++j)
-         cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
-                              fe_values.shape_grad(j,point)) *
-                             fe_values.JxW(point);
-       rhs(i) += fe_values.shape_value(i,point) *
-                 right_hand_side(fe_values.quadrature_point(point)) *
-                 fe_values.JxW(point);
-      };
+  for (unsigned int point=0; point<fe_values.n_quadrature_points; ++point) 
+    {
+      const double c = (use_coefficient ?
+                       coefficient(fe_values.quadrature_point(point)) :
+                       1);
+      for (unsigned int i=0; i<fe_values.total_dofs; ++i) 
+       {
+         for (unsigned int j=0; j<fe_values.total_dofs; ++j)
+           cell_matrix(i,j) += (fe_values.shape_grad(i,point) *
+                                fe_values.shape_grad(j,point)) *
+                               fe_values.JxW(point) *
+                               c;
+         rhs(i) += fe_values.shape_value(i,point) *
+                   right_hand_side(fe_values.quadrature_point(point)) *
+                   fe_values.JxW(point);
+       };
+    };
 };
 
 
@@ -222,40 +294,20 @@ void PoissonEquation<dim>::assemble (dVector             &,
 template <int dim>
 PoissonProblem<dim>::PoissonProblem () :
                tria(0), dof(0), rhs(0),
-               solution_function(0), boundary(0) {};
+               solution_function(0), coefficient(0),
+               boundary(0) {};
 
 
 
 
 template <int dim>
 void PoissonProblem<dim>::clear () {
-  if (tria != 0) {
-    delete tria;
-    tria = 0;
-  };
-  
-  if (dof != 0) {
-    delete dof;
-    dof = 0;
-  };
-
-  if (rhs != 0) 
-    {
-      delete rhs;
-      rhs = 0;
-    };
-
-  if (solution_function != 0) 
-    {
-      delete solution_function;
-      solution_function = 0;
-    };
-
-  if (boundary != 0)
-    {
-      delete boundary;
-      boundary = 0;
-    };
+  if (tria != 0)              { delete tria;              tria = 0;              };
+  if (dof != 0)               { delete dof;               dof = 0;               };
+  if (rhs != 0)               { delete rhs;               rhs = 0;               };
+  if (solution_function != 0) { delete solution_function; solution_function = 0; };
+  if (coefficient != 0)       { delete coefficient;       coefficient = 0;       };
+  if (boundary != 0)          { delete boundary;          boundary = 0;          };
   
   l2_error.clear ();
   linfty_error.clear ();
@@ -283,7 +335,8 @@ void PoissonProblem<dim>::create_new (const unsigned int) {
 
 template <int dim>
 void PoissonProblem<dim>::declare_parameters (ParameterHandler &prm) {
-  prm.declare_entry ("Test case", "Gauss shape", "Gauss shape\\|Singular");
+  prm.declare_entry ("Test case", "Gauss shape",
+                    "Gauss shape\\|Singular\\|Kink");
   prm.declare_entry ("Initial refinement", "2",
                     ParameterHandler::RegularExpressions::Integer);
   prm.declare_entry ("Refinement criterion", "estimated error",
@@ -345,17 +398,29 @@ void PoissonProblem<dim>::run (ParameterHandler &prm) {
   else
     if (prm.get("Test case")=="Singular")
       rhs             = new RHS<dim>::Singular();
+    else
+      if (prm.get("Test case")=="Kink")
+       rhs             = new RHS<dim>::Kink();
   
   if (prm.get("Test case")=="Gauss shape")
     solution_function = new Solution<dim>::GaussShape ();
   else
     if (prm.get("Test case")=="Singular")
       solution_function = new Solution<dim>::Singular ();
+    else
+      if (prm.get("Test case")=="Kink")
+       solution_function = new Solution<dim>::Kink ();
   
   
-  FELinear<dim>                   fe;
-  PoissonEquation<dim>            equation (*rhs);
-  QGauss3<dim>                    quadrature;
+  FELinear<dim>         fe;
+  QGauss3<dim>          quadrature;
+  PoissonEquation<dim> *equation;
+  
+  static Solution<dim>::Kink::Coefficient kink_coefficient;
+  if (prm.get("Test case")=="Kink")
+    equation = new PoissonEquation<dim>(*rhs, kink_coefficient);
+  else
+    equation = new PoissonEquation<dim>(*rhs);
 
   unsigned int refine_step = 0;
   const unsigned int max_cells = prm.get_integer("Maximum cells");
@@ -376,7 +441,7 @@ void PoissonProblem<dim>::run (ParameterHandler &prm) {
   
       ProblemBase<dim>::FunctionMap dirichlet_bc;
       dirichlet_bc[0] = solution_function;
-      assemble (equation, quadrature, fe, update_flags, dirichlet_bc);
+      assemble (*equation, quadrature, fe, update_flags, dirichlet_bc);
 
       cout << "    Solving..." << endl;
       solve ();
@@ -485,6 +550,8 @@ void PoissonProblem<dim>::run (ParameterHandler &prm) {
   
   print_history (prm, refine_mode);
   cout << endl << endl << endl;
+
+  delete equation;
 };
 
 
index 38d05f569a0d3389d5bbd6faf73025aa022460fd..06340e21a437447387a996450910bb0a38a6f00c 100644 (file)
@@ -41,3 +41,22 @@ plot "data-singular/history.estimated_error.gnuplot" using 1:2 title "L2 error",
 
 set output "data-singular/history.compare.eps"
 plot "data-singular/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-singular/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", "data-singular/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-singular/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error"
+
+
+
+
+
+
+
+set output "data-kink/history.global.eps"
+
+plot "data-kink/history.global.gnuplot" using 1:2 title "L2 error","data-kink/history.global.gnuplot" using 1:3 title "Linfty error","data-kink/history.global.gnuplot" using 1:4 title "H1 error","data-kink/history.global.gnuplot" using 1:5 title "Estimated H1 error"
+
+
+set output "data-kink/history.estimated_error.eps"
+
+plot "data-kink/history.estimated_error.gnuplot" using 1:2 title "L2 error","data-kink/history.estimated_error.gnuplot" using 1:3 title "Linfty error","data-kink/history.estimated_error.gnuplot" using 1:4 title "H1 error","data-kink/history.estimated_error.gnuplot" using 1:5 title "Estimated H1 error"
+
+
+set output "data-kink/history.compare.eps"
+plot "data-kink/history.global.gnuplot" using 1:2 title "global refinement -- L2 error", "data-kink/history.estimated_error.gnuplot" using 1:2 title "ref. by estimated error -- L2 error", "data-kink/history.global.gnuplot" using 1:4 title "global refinement -- H1 error", "data-kink/history.estimated_error.gnuplot" using 1:4 title "ref. by estimated error -- H1 error"

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.