]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Added some comments, changed some code to be in line with the findings in step-22.
authorMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Thu, 7 Aug 2008 12:53:32 +0000 (12:53 +0000)
committerMartin Kronbichler <kronbichler@lnm.mw.tum.de>
Thu, 7 Aug 2008 12:53:32 +0000 (12:53 +0000)
git-svn-id: https://svn.dealii.org/trunk@16509 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-31/step-31.cc

index bbcdf43d84a25a4dd5ec445f8c8fe6695d78e5ac..addc5e237f46aab3ebc84714a2957426ef2f4ad3 100644 (file)
@@ -177,17 +177,7 @@ class BoussinesqFlowProblem
                                 // In this case, we choose a very simple
                                 // test case, where everything is zero.
 
-                                // The last definition of this kind
-                                // is the one for the right hand
-                                // side function. Again, the content
-                                // of the function is very
-                                // basic and zero in most of the
-                                // components, except for a source
-                                // of temperature in some isolated
-                                // regions near the bottom of the
-                                // computational domain, as is explained
-                                // in the problem description in the
-                                // introduction.
+                                // @sect4{Boundary values}
 template <int dim>
 class PressureBoundaryValues : public Function<dim>
 {
@@ -236,7 +226,7 @@ TemperatureBoundaryValues<dim>::value (const Point<dim> &p,
 
 
 
-
+                                // @sect4{Initial values}
 template <int dim>
 class InitialValues : public Function<dim>
 {
@@ -271,6 +261,19 @@ InitialValues<dim>::vector_value (const Point<dim> &p,
 
 
 
+                                // @sect4{Right hand side}
+                                // 
+                                // The last definition of this kind
+                                // is the one for the right hand
+                                // side function. Again, the content
+                                // of the function is very
+                                // basic and zero in most of the
+                                // components, except for a source
+                                // of temperature in some isolated
+                                // regions near the bottom of the
+                                // computational domain, as is explained
+                                // in the problem description in the
+                                // introduction.
 template <int dim>
 class RightHandSide : public Function<dim>
 {
@@ -587,11 +590,55 @@ BoussinesqFlowProblem<dim>::BoussinesqFlowProblem (const unsigned int degree)
 
 
                                 // @sect4{BoussinesqFlowProblem::setup_dofs}
+                                // 
+                                // This function does the same as
+                                // in most other tutorial programs. 
+                                // As a slight difference, the 
+                                // program is called with a 
+                                // parameter <code>setup_matrices</code>
+                                // that decides whether to 
+                                // recreate the sparsity pattern
+                                // and the associated stiffness
+                                // matrix.
+                                // 
+                                // The body starts by assigning dofs on 
+                                // basis of the chosen finite element,
+                                // and then renumbers the dofs 
+                                // first using the Cuthill_McKee
+                                // algorithm (to generate a good
+                                // quality ILU during the linear
+                                // solution process) and then group
+                                // components of velocity, pressure
+                                // and temperature together. This 
+                                // happens in complete analogy to
+                                // step-22.
+                                // 
+                                // We then proceed with the generation
+                                // of the hanging node constraints
+                                // that arise from adaptive grid
+                                // refinement. Next we impose
+                                // the no-flux boundary conditions
+                                // $\vec{u}\cdot \vec{n}=0$ by adding
+                                // a respective constraint to the
+                                // hanging node constraints
+                                // matrix. The second parameter in 
+                                // the function describes the first 
+                                // of the velocity components
+                                // in the total dof vector, which is 
+                                // zero here. The parameter 
+                                // <code>no_normal_flux_boundaries</code>
+                                // sets the no flux b.c. to those
+                                // boundaries with boundary indicator
+                                // zero.
 template <int dim>
 void BoussinesqFlowProblem<dim>::setup_dofs (const bool setup_matrices)
 {
   dof_handler.distribute_dofs (fe);
-  DoFRenumbering::component_wise (dof_handler);
+  DoFRenumbering::Cuthill_McKee (dof_handler);
+  std::vector<unsigned int> block_component (dim+2,0);
+  block_component[dim] = 1;
+  block_component[dim+1] = 2;
+  DoFRenumbering::component_wise (dof_handler, block_component);
 
   hanging_node_constraints.clear ();
   DoFTools::make_hanging_node_constraints (dof_handler,
@@ -603,11 +650,25 @@ void BoussinesqFlowProblem<dim>::setup_dofs (const bool setup_matrices)
                                                   hanging_node_constraints);
   hanging_node_constraints.close ();
 
-  std::vector<unsigned int> dofs_per_component (dim+2);
-  DoFTools::count_dofs_per_component (dof_handler, dofs_per_component);
-  const unsigned int n_u = dofs_per_component[0] * dim,
-                     n_p = dofs_per_component[dim],
-                     n_T = dofs_per_component[dim+1];
+                                // The next step is, as usual, 
+                                // to write some information
+                                // to the screen. The information
+                                // that is most interesting during
+                                // the calculations is the
+                                // number of degrees of freedom
+                                // in the individual components,
+                                // so we count them. The function 
+                                // to do this is the same as the
+                                // one used in step-22, which 
+                                // uses the grouping of all
+                                // velocity components into
+                                // one block as introduced
+                                // above.
+  std::vector<unsigned int> dofs_per_block (3);
+  DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component);  
+  const unsigned int n_u = dofs_per_block[0],
+                     n_p = dofs_per_block[1],
+                    n_T = dofs_per_block[2];
 
   std::cout << "Number of active cells: "
             << triangulation.n_active_cells()
@@ -618,34 +679,91 @@ void BoussinesqFlowProblem<dim>::setup_dofs (const bool setup_matrices)
             << std::endl
             << std::endl;
 
-  const unsigned int
-    n_couplings = dof_handler.max_couplings_between_dofs();
-
+                                // The next step is to 
+                                // create the sparsity 
+                                // pattern for the system matrix 
+                                // based on the Boussinesq 
+                                // system. As in step-22, 
+                                // we choose to create the
+                                // pattern not as in the
+                                // first tutorial programs,
+                                // but by using the blocked
+                                // version of 
+                                // CompressedSetSparsityPattern.
+                                // The reason for doing this 
+                                // is mainly a memory issue,
+                                // that is, the basic procedures
+                                // consume too much memory
+                                // when used in three spatial
+                                // dimensions as we intend
+                                // to do for this program.
+                                // 
+                                // So, in case we need
+                                // to recreate the matrices,
+                                // we first release the
+                                // stiffness matrix from the
+                                // sparsity pattern and then
+                                // set up an object of the 
+                                // BlockCompressedSetSparsityPattern
+                                // consisting of three blocks. 
+                                // Each of these blocks is
+                                // initialized with the
+                                // respective number of 
+                                // degrees of freedom. 
+                                // Once the blocks are 
+                                // created, the overall size
+                                // of the sparsity pattern
+                                // is initiated by invoking 
+                                // the <code>collect_sizes()</code>
+                                // command, and then the
+                                // sparsity pattern can be
+                                // filled with information.
+                                // Then, the hanging
+                                // node constraints are applied
+                                // to the temporary sparsity
+                                // pattern, which is finally
+                                // then completed and copied
+                                // into the general sparsity
+                                // pattern structure.
+                                // 
+                                // After these actions, we 
+                                // need to reassign the 
+                                // system matrix structure to
+                                // the sparsity pattern.
   if (setup_matrices == true)
     {
       system_matrix.clear ();
 
-      sparsity_pattern.reinit (3,3);
-      sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings);
-      sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings);
-      sparsity_pattern.block(2,0).reinit (n_T, n_u, n_couplings);
-      sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings);
-      sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings);
-      sparsity_pattern.block(2,1).reinit (n_T, n_p, n_couplings);
-      sparsity_pattern.block(0,2).reinit (n_u, n_T, n_couplings);
-      sparsity_pattern.block(1,2).reinit (n_p, n_T, n_couplings);
-      sparsity_pattern.block(2,2).reinit (n_T, n_T, n_couplings);
-
-      sparsity_pattern.collect_sizes();
-
-
-      DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern);
-      hanging_node_constraints.condense (sparsity_pattern);
-      sparsity_pattern.compress();
+      BlockCompressedSetSparsityPattern csp (3,3);
+      csp.block(0,0).reinit (n_u, n_u);
+      csp.block(0,1).reinit (n_u, n_p);
+      csp.block(0,2).reinit (n_u, n_T);
+      csp.block(1,0).reinit (n_p, n_u);
+      csp.block(1,1).reinit (n_p, n_p);
+      csp.block(1,2).reinit (n_p, n_T);
+      csp.block(2,0).reinit (n_T, n_u);
+      csp.block(2,1).reinit (n_T, n_p);
+      csp.block(2,2).reinit (n_T, n_T);
+      
+      csp.collect_sizes ();
+      
+      DoFTools::make_sparsity_pattern (dof_handler, csp);
+      hanging_node_constraints.condense (csp);
+      sparsity_pattern.copy_from (csp);
 
       system_matrix.reinit (sparsity_pattern);
     }
 
+                                // As last action in this function,
+                                // we need to set the vectors
+                                // for the solution, the old 
+                                // solution (required for 
+                                // time stepping) and the system
+                                // right hand side to the 
+                                // three-block structure given
+                                // by velocity, pressure and
+                                // temperature.
   solution.reinit (3);
   solution.block(0).reinit (n_u);
   solution.block(1).reinit (n_p);
@@ -668,6 +786,73 @@ void BoussinesqFlowProblem<dim>::setup_dofs (const bool setup_matrices)
 
 
                                 // @sect4{BoussinesqFlowProblem::assemble_system}
+                                // 
+                                // The assembly of the Boussinesq 
+                                // system is acutally a two-step
+                                // procedure. One is to create
+                                // the Stokes system matrix and
+                                // right hand side for the 
+                                // velocity-pressure system as
+                                // well as the mass matrix for
+                                // temperature, and
+                                // the second is to create the
+                                // rhight hand side for the temperature
+                                // dofs. The reason for doing this
+                                // in two steps is simply that 
+                                // the time stepping we have chosen
+                                // needs the result from the Stokes
+                                // system at the current time step
+                                // for building the right hand
+                                // side of the temperature equation.
+                                // 
+                                // This function does the 
+                                // first of these two tasks.
+                                // There are two different situations
+                                // for calling this function. The
+                                // first one is when we reset the
+                                // mesh, and both the matrix and
+                                // the right hand side have to
+                                // be generated. The second situation
+                                // only sets up the right hand
+                                // side. The reason for having 
+                                // two different accesses is that
+                                // the matrix of the Stokes system
+                                // does not change in time unless
+                                // the mesh is changed, so we can
+                                // save a considerable amount of
+                                // work by doing the full assembly
+                                // only when it is needed.
+                                // 
+                                // Regarding the technical details
+                                // of implementation, not much has
+                                // changed from step-22. We reset
+                                // matrix and vector, create 
+                                // a quadrature formula on the 
+                                // cells and one on cell faces
+                                // (for implementing Neumann 
+                                // boundary conditions). Then,
+                                // we create a respective
+                                // FEValues object for both the 
+                                // cell and the face integration.
+                                // For the the update flags of
+                                // the first, we perform the
+                                // calculations of basis function
+                                // derivatives only in
+                                // case of a full assembly, since
+                                // they are not needed otherwise,
+                                // which makes the call of
+                                // the FEValues::reinit function
+                                // further down in the program 
+                                // more efficient.
+                                // 
+                                // The declarations proceed 
+                                // with some shortcuts for 
+                                // array sizes, the creation of
+                                // the local matrix and right 
+                                // hand side as well as the
+                                // vector for the indices of
+                                // the local dofs compared to
+                                // the global system.
 template <int dim>
 void BoussinesqFlowProblem<dim>::assemble_system ()
 {
@@ -689,8 +874,10 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
                            :
                            UpdateFlags(0)));
   FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
-                                    update_values    | update_normal_vectors |
-                                    update_quadrature_points  | update_JxW_values);
+                                   update_values    | 
+                                   update_normal_vectors |
+                                   update_quadrature_points  | 
+                                   update_JxW_values);
 
   const unsigned int   dofs_per_cell   = fe.dofs_per_cell;
 
@@ -702,13 +889,43 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
 
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
+                                // These few declarations provide
+                                // the structures for the evaluation
+                                // of inhomogeneous Neumann boundary
+                                // conditions from the function
+                                // declaration made above.
+                                // The vector <code>old_solution_values</code>
+                                // evaluates the solution 
+                                // at the old time level, since
+                                // the temperature from the
+                                // old time level enters the 
+                                // Stokes system as a source
+                                // term in the momentum equation.
+                                // 
+                                // Then, we create a variable
+                                // to hold the Rayleigh number,
+                                // the measure of buoyancy.
+                                // 
+                                // The set of vectors we create
+                                // next hold the evaluations of
+                                // the basis functions that will
+                                // be used for creating the
+                                // matrices. This gives faster
+                                // access to that data, which
+                                // increases the performance
+                                // of the assembly. See step-22 
+                                // for details.
+                                // 
+                                // The last few declarations 
+                                // are used to extract the 
+                                // individual blocks (velocity,
+                                // pressure, temperature) from
+                                // the total FE system.
   const PressureBoundaryValues<dim> pressure_boundary_values;
-
   std::vector<double>               boundary_values (n_face_q_points);
 
-  std::vector<Vector<double> >      old_solution_values(n_q_points, Vector<double>(dim+2));
-  std::vector<std::vector<Tensor<1,dim> > >  old_solution_grads(n_q_points,
-                                                                std::vector<Tensor<1,dim> > (dim+2));
+  std::vector<Vector<double> >      old_solution_values(n_q_points,
+                                                       Vector<double>(dim+2));
 
   const double Rayleigh_number = 10;
 
@@ -723,6 +940,19 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
   const FEValuesExtractors::Scalar pressure (dim);
   const FEValuesExtractors::Scalar temperature (dim+1);
 
+                                // Now starts the loop over
+                                // all cells in the problem.
+                                // The first commands are all
+                                // very familiar, doing the
+                                // evaluations of the element
+                                // basis functions, resetting
+                                // the local arrays and 
+                                // getting the values of the
+                                // old solution at the
+                                // quadrature point. Then we
+                                // are ready to loop over
+                                // the quadrature points 
+                                // on the cell.
   typename DoFHandler<dim>::active_cell_iterator
     cell = dof_handler.begin_active(),
     endc = dof_handler.end();
@@ -741,8 +971,28 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
                                // Extract the basis relevant
                                // terms in the inner products
                                // once in advance as shown
-                               // in step-22. This accelerates
-                               // the assembly process,
+                               // in step-22 in order to 
+                               // accelerate assembly.
+                               // 
+                               // Once this is done, we 
+                               // start the loop over the
+                               // rows and columns of the
+                               // local matrix and feed
+                               // the matrix with the relevant
+                               // products. The right hand
+                               // side is filled with the 
+                               // forcing term driven by
+                               // temperature in direction
+                               // of gravity (which is 
+                               // vertical in our example).
+                               // Note that the right hand 
+                               // side term is always generated,
+                               // whereas the matrix 
+                               // contributions are only
+                               // updated when it is 
+                               // requested by the
+                               // <code>rebuild_matrices</code>
+                               // flag.
          for (unsigned int k=0; k<dofs_per_cell; ++k)
            {
              phi_u[k] = fe_values[velocities].value (k,q);
@@ -770,7 +1020,8 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
                                        + phi_T[i] * phi_T[j])
                                       * fe_values.JxW(q);
 
-             const Point<dim> gravity (0,1);
+             const Point<dim> gravity = ( (dim == 2) ? (Point<dim> (0,1)) : 
+                                                       (Point<dim> (0,1,0)) );
 
              local_rhs(i) += (Rayleigh_number *
                               gravity * phi_u[i] * old_temperature)*
@@ -778,14 +1029,18 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
           }
        }
 
-
-                               // The assembly of the face
-                               // cells which enters the
-                               // right hand sides cannot
-                               // be accelerated with the
-                               // above technique, since
-                               // all the basis functions are
-                               // only evaluated once.
+                                // Next follows the assembly 
+                                // of the face terms, result
+                                // from Neumann boundary 
+                                // conditions. Since these
+                                // terms only enter the right
+                                // hand side vector and not
+                                // the matrix, there is no
+                                // substantial benefit from
+                                // extracting the data 
+                                // before using it, so 
+                                // we remain in the lines 
+                                // of step-20 at this point.
       for (unsigned int face_no=0;
            face_no<GeometryInfo<dim>::faces_per_cell;
            ++face_no)
@@ -810,6 +1065,16 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
                 }
           }
 
+                                // The last step in the loop 
+                                // over all cells is to
+                                // enter the local contributions
+                                // into the global matrix and 
+                                // vector structures to the
+                                // positions specified in 
+                                // <code>local_dof_indices</code>.
+                                // Again, we only add the 
+                                // matrix data when it is 
+                                // requested.
       cell->get_dof_indices (local_dof_indices);
 
       if (rebuild_matrices == true)
@@ -825,6 +1090,13 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
         system_rhs(local_dof_indices[i]) += local_rhs(i);
     }
 
+                                // Back at the outermost
+                                // level of this function,
+                                // we continue the work
+                                // by condensing hanging
+                                // node constraints to the
+                                // right hand side and, 
+                                // possibly, to the matrix.
   if (rebuild_matrices == true)
     hanging_node_constraints.condense (system_matrix);
 
@@ -866,6 +1138,33 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
 //                                       system_rhs);
     }
 
+                                // This last step of the assembly
+                                // function sets up the preconditioners
+                                // used for the solution of the
+                                // system. We are going to use an
+                                // ILU preconditioner for the
+                                // velocity block (to be used
+                                // by BlockSchurPreconditioner class)
+                                // as well as an ILU preconditioner
+                                // for the inversion of the 
+                                // pressure mass matrix. Recall that
+                                // the velocity-velocity block sits
+                                // at position (0,0) in the 
+                                // global system matrix, and
+                                // the pressure mass matrix in
+                                // (1,1). The 
+                                // storage of these objects is
+                                // as in step-22, that is, we
+                                // include them using a 
+                                // shared pointer structure from the
+                                // boost library.
+                                // 
+                                // When all work is done, we 
+                                // change the flags 
+                                // <code>rebuild_preconditioner</code>
+                                // and 
+                                // <code>rebuild_matrices</code>
+                                // to false.
   if (rebuild_preconditioner == true)
     {
       Assert (rebuild_matrices == true,
@@ -874,18 +1173,12 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
 
       std::cout << "   Rebuilding preconditioner..." << std::flush;
 
-                               // Rebuild the preconditioner
-                               // for the velocity-velocity
-                               // block (0,0)
-      A_preconditioner
+     A_preconditioner
        = boost::shared_ptr<typename InnerPreconditioner<dim>::type>
                (new typename InnerPreconditioner<dim>::type());
       A_preconditioner->initialize (system_matrix.block(0,0),
                typename InnerPreconditioner<dim>::type::AdditionalData());
 
-                               // Rebuild the preconditioner
-                               // for the pressure-pressure
-                               // block (1,1)
       Mp_preconditioner
        = boost::shared_ptr<SparseILU<double> >
                (new SparseILU<double>);
@@ -905,6 +1198,28 @@ void BoussinesqFlowProblem<dim>::assemble_system ()
 
 
                                 // @sect4{BoussinesqFlowProblem::assemble_rhs_T}
+                                // 
+                                // This function does the second
+                                // part of the assembly work, the
+                                // creation of the velocity-dependent
+                                // right hand side of the
+                                // temperature equation. The 
+                                // declarations in this function
+                                // are pretty much the same as the
+                                // ones used in the other 
+                                // assembly routine, except that we
+                                // restrict ourselves to vectors
+                                // this time. Though, we need to
+                                // perform more face integrals 
+                                // at this point, induced by the
+                                // use of discontinuous elements for 
+                                // the temperature (just
+                                // as it was in the first DG 
+                                // example in step-12) in combination
+                                // with adaptive grid refinement
+                                // and subfaces. The update 
+                                // flags at face level are the 
+                                // same as in step-12.
 template <int dim>
 void BoussinesqFlowProblem<dim>::assemble_rhs_T ()
 {
@@ -914,10 +1229,12 @@ void BoussinesqFlowProblem<dim>::assemble_rhs_T ()
                            update_values    | update_gradients |
                            update_quadrature_points  | update_JxW_values);
   FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula,
-                                    update_values    | update_normal_vectors |
-                                    update_quadrature_points  | update_JxW_values);
+                                   update_values    | update_normal_vectors |
+                                   update_quadrature_points  |
+                                   update_JxW_values);
   FESubfaceValues<dim> fe_subface_values (fe, face_quadrature_formula,
-                                         update_values    | update_normal_vectors |
+                                         update_values | 
+                                         update_normal_vectors |
                                          update_JxW_values);
   FEFaceValues<dim> fe_face_values_neighbor (fe, face_quadrature_formula,
                                              update_values);
@@ -930,24 +1247,52 @@ void BoussinesqFlowProblem<dim>::assemble_rhs_T ()
 
   Vector<double>       local_rhs (dofs_per_cell);
 
-  std::vector<Vector<double> > old_solution_values(n_q_points, Vector<double>(dim+2));
-
-  std::vector<Vector<double> > old_solution_values_face(n_face_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > old_solution_values_face_neighbor(n_face_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > present_solution_values(n_q_points, Vector<double>(dim+2));
-  std::vector<Vector<double> > present_solution_values_face(n_face_q_points, Vector<double>(dim+2));
-
-  std::vector<std::vector<Tensor<1,dim> > >
-    present_solution_grads(n_q_points,
-                          std::vector<Tensor<1,dim> >(dim+2));
+  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
+                                // Here comes the declaration
+                                // of vectors to hold the old
+                                // and present solution values
+                                // and gradients
+                                // for both the cell as well as faces
+                                // to the cell. Next comes the
+                                // declaration of an object
+                                // to hold the temperature 
+                                // boundary values and a
+                                // well-known extractor for
+                                // accessing the temperature
+                                // part of the FE system.
+  std::vector<Vector<double> > old_solution_values(n_q_points,
+                                                  Vector<double>(dim+2));
+
+  std::vector<Vector<double> > old_solution_values_face(n_face_q_points, 
+                                                       Vector<double>(dim+2));
+  std::vector<Vector<double> > old_solution_values_face_neighbor (
+                                                       n_face_q_points,
+                                                       Vector<double>(dim+2));
+  std::vector<Vector<double> > present_solution_values (n_q_points, 
+                                                       Vector<double>(dim+2));
+  std::vector<Vector<double> > present_solution_values_face(
+                                                       n_face_q_points, 
+                                                       Vector<double>(dim+2));
+
+  std::vector<std::vector<Tensor<1,dim> > >  present_solution_grads(
+                                 n_q_points,
+                                 std::vector<Tensor<1,dim> >(dim+2));
 
   std::vector<double> neighbor_temperature (n_face_q_points);
-  std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
   TemperatureBoundaryValues<dim> temperature_boundary_values;
   const FEValuesExtractors::Scalar temperature (dim+1);
 
+                                // Now, let's start the loop
+                                // over all cells in the
+                                // triangulation. The first
+                                // actions within the loop
+                                // are, as usual, the evaluation
+                                // of the FE basis functions 
+                                // and the old and present
+                                // solution at the quadrature 
+                                // points.
   typename DoFHandler<dim>::active_cell_iterator
     cell = dof_handler.begin_active(),
     endc = dof_handler.end();
@@ -1244,6 +1589,11 @@ void BoussinesqFlowProblem<dim>::solve ()
                                // Produce a constistent solution field
     hanging_node_constraints.distribute (up);
 
+    std::cout << "   "
+              << solver_control.last_step()
+              << " GMRES iterations for Stokes subsystem."
+              << std::endl;
+             
     solution.block(0) = up.block(0);
     solution.block(1) = up.block(1);
   }
@@ -1255,15 +1605,15 @@ void BoussinesqFlowProblem<dim>::solve ()
   {
 
     SolverControl solver_control (system_matrix.block(2,2).m(),
-                                  1e-8*system_rhs.block(2).l2_norm());
+                                 1e-8*system_rhs.block(2).l2_norm());
     SolverCG<>   cg (solver_control);
     PreconditionJacobi<> preconditioner;
     preconditioner.initialize (system_matrix.block(2,2));
 
     try
       {
-       cg.solve (system_matrix.block(2,2), solution.block(2), system_rhs.block(2),
-                 preconditioner);
+       cg.solve (system_matrix.block(2,2), solution.block(2),
+                 system_rhs.block(2), preconditioner);
       }
     catch (...)
       {
@@ -1509,7 +1859,7 @@ void BoussinesqFlowProblem<dim>::run ()
        if (timestep_number % 10 == 0)
          refine_mesh ();
     }
-  while (time <= 5);
+  while (time <= 50);
 }
 
 

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.