]> https://gitweb.dealii.org/ - dealii-svn.git/commitdiff
new FilteredMatrix
authorkanschat <kanschat@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Sep 2007 20:21:19 +0000 (20:21 +0000)
committerkanschat <kanschat@0785d39b-7218-0410-832d-ea1e28bc413d>
Tue, 25 Sep 2007 20:21:19 +0000 (20:21 +0000)
git-svn-id: https://svn.dealii.org/trunk@15238 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/deal.II/source/grid/grid_generator.cc
deal.II/doc/news/changes.h
deal.II/lac/include/lac/filtered_matrix.h
deal.II/lac/include/lac/filtered_matrix.templates.h [deleted file]
deal.II/lac/source/filtered_matrix.cc

index aaf94e5372760ae2e06af40b6db91137d25fe2b4..70adfd55c7e6e69baf3ed695420d7cb7e10a0296 100644 (file)
@@ -2287,17 +2287,20 @@ void GridGenerator::laplace_solve (const SparseMatrix<double> &S,
                                   Vector<double> &u)
 {
   const unsigned int n_dofs=S.n();
-  FilteredMatrix<SparseMatrix<double> > SF (S);
+  FilteredMatrix<Vector<double> > SF (S);
+  PreconditionJacobi<SparseMatrix<double> > prec;
+  prec.initialize(S, 1.2);
+  FilteredMatrix<Vector<double> > PF (prec);
+  
   SolverControl control (1000, 1.e-10, false, false);
   PrimitiveVectorMemory<Vector<double> > mem;
   SolverCG<Vector<double> > solver (control, mem);
-  PreconditionJacobi<FilteredMatrix<SparseMatrix<double> > > prec;
+  
   Vector<double> f(n_dofs);
   
   SF.add_constraints(m);
-  prec.initialize (SF);
   SF.apply_constraints (f, true);
-  solver.solve(SF, u, f, prec);
+  solver.solve(SF, u, f, PF);
 }
 
 
index e08bb5d0b32fae19daa4d85ead690777f5721eaa..7ebb011822071153cce6b3f19a211c7c32abed73 100644 (file)
@@ -30,6 +30,16 @@ inconvenience this causes.
 </p>
 
 <ol>
+
+<li> <p>Changed: FilteredMatrix now can be applied to any matrix having the standard
+set of <code>vmult</code> functions. In order to achieve this, its interface had to be overhauled.
+Only the <code>VECTOR</code> template argument remains. Furthermore, instead of
+PreconditionJacobi being applied to FilteredMatrix, FilteredMatrix
+can now be applied to any preconditioner.
+<br>
+(GK 2007/09/25)
+</p>
+
   <li> <p>Changed: The deprecated typedefs
   <code>internal::Triangulation::Line</code>, 
   <code>internal::Triangulation::Quad</code>, and
index d9c3394f70b5bff631bd1e7fa0af7fff0454ac40..cbefe2b29fff081ddb6fbcefccae04b8012db03e 100644 (file)
@@ -18,6 +18,9 @@
 #include <base/config.h>
 #include <base/smartpointer.h>
 #include <base/thread_management.h>
+#include <base/memory_consumption.h>
+#include <lac/pointer_matrix.h>
+#include <lac/vector_memory.h>
 #include <vector>
 #include <algorithm>
 
@@ -35,7 +38,82 @@ template <typename number> class Vector;
  * This class is a wrapper for linear systems of equations with simple
  * equality constraints fixing individual degrees of freedom to a
  * certain value such as when using Dirichlet boundary
- * values. Mathematically speaking, it is used to represent a system
+ * values.
+ *
+ * In order to accomplish this, the vmult(), Tvmult(), vmult_add() and
+ * Tvmult_add functions modify the same function of the original
+ * matrix such as if all constrained entries of the source vector were
+ * zero. Additionally, all constrained entries of the destination
+ * vector are set to zero.
+ *
+ * <h3>Usage</h3>
+ *
+ * Usage is simple: create an object of this type, point it to a
+ * matrix that shall be used for $A$ above (either through the
+ * constructor, the copy constructor, or the
+ * set_referenced_matrix() function), specify the list of boundary
+ * values or other constraints (through the add_constraints()
+ * function), and then for each required solution modify the right
+ * hand side vector (through apply_constraints()) and use this
+ * object as matrix object in a linear solver. As linear solvers
+ * should only use vmult() and residual() functions of a
+ * matrix class, this class should be as a good a matrix as any other
+ * for that purpose.
+ *
+ * Furthermore, also the precondition_Jacobi() function is
+ * provided (since the computation of diagonal elements of the
+ * filtered matrix $A_X$ is simple), so you can use this as a
+ * preconditioner. Some other function useful for matrices are also
+ * available.
+ *
+ * A typical code snippet showing the above steps is as follows:
+ * @verbatim
+ *   ... // set up sparse matrix A and right hand side b somehow
+ *
+ *                     // initialize filtered matrix with
+ *                     // matrix and boundary value constraints
+ *   FilteredMatrix<SparseMatrix<double> > filtered_A (A);
+ *   filtered_A.add_constraints (boundary_values);
+ *
+ *                     // set up a linear solver
+ *   SolverControl control (1000, 1.e-10, false, false);
+ *   PrimitiveVectorMemory<Vector<double> > mem;
+ *   SolverCG<Vector<double> > solver (control, mem);
+ *
+ *                     // set up a preconditioner object
+ *   PreconditionJacobi<FilteredMatrix<SparseMatrix<double> > > prec;
+ *   prec.initialize (filtered_A, 1.2);
+ *
+ *                     // compute modification of right hand side
+ *   filtered_A.apply_constraints (b, true);
+ *
+ *                     // solve for solution vector x
+ *   solver.solve (filtered_A, x, b, prec);
+ * @endverbatim
+ *
+ * <h3>Connection to other classes</h3>
+ *
+ * The function MatrixTools::apply_boundary_values() does exactly
+ * the same that this class does, except for the fact that that
+ * function actually modifies the matrix. Due to this, it is only
+ * possible to solve with a matrix onto which
+ * MatrixTools::apply_boundary_values() was applied for one right
+ * hand side and one set of boundary values since the modification of
+ * the right hand side depends on the original matrix.
+ *
+ * While this is fine (and the recommended way) in cases where only
+ * one solution of the linear system is required, for example in
+ * solving linear stationary systems, one would often like to have the
+ * ability to solve multiply with the same matrix in nonlinear
+ * problems (where one often does not want to update the Hessian
+ * between Newton steps, despite having different right hand sides in
+ * subsequent steps) or time dependent problems, without having to
+ * re-assemble the matrix or copy it to temporary matrices with which
+ * one then can work. For these cases, this class is meant.
+ *
+ *
+ * <h3>Some background</h3>
+ * Mathematically speaking, it is used to represent a system
  * of linear equations $Ax=b$ with the constraint that $B_D x = g_D$,
  * where $B_D$ is a rectangular matrix with exactly one $1$ in each
  * row, and these $1$s in those columns representing constrained
@@ -100,72 +178,6 @@ template <typename number> class Vector;
  * hand side, through the apply_constraints() function.
  *
  *
- * <h3>Connection to other classes</h3>
- *
- * The function MatrixTools::apply_boundary_values() does exactly
- * the same that this class does, except for the fact that that
- * function actually modifies the matrix. Due to this, it is only
- * possible to solve with a matrix onto which
- * MatrixTools::apply_boundary_values() was applied for one right
- * hand side and one set of boundary values since the modification of
- * the right hand side depends on the original matrix.
- *
- * While this is fine (and the recommended way) in cases where only
- * one solution of the linear system is required, for example in
- * solving linear stationary systems, one would often like to have the
- * ability to solve multiply with the same matrix in nonlinear
- * problems (where one often does not want to update the Hessian
- * between Newton steps, despite having different right hand sides in
- * subsequent steps) or time dependent problems, without having to
- * re-assemble the matrix or copy it to temporary matrices with which
- * one then can work. For these cases, this class is meant.
- *
- *
- * <h3>Usage</h3>
- *
- * Usage is simple: create an object of this type, point it to a
- * matrix that shall be used for $A$ above (either through the
- * constructor, the copy constructor, or the
- * set_referenced_matrix() function), specify the list of boundary
- * values or other constraints (through the add_constraints()
- * function), and then for each required solution modify the right
- * hand side vector (through apply_constraints()) and use this
- * object as matrix object in a linear solver. As linear solvers
- * should only use vmult() and residual() functions of a
- * matrix class, this class should be as a good a matrix as any other
- * for that purpose.
- *
- * Furthermore, also the precondition_Jacobi() function is
- * provided (since the computation of diagonal elements of the
- * filtered matrix $A_X$ is simple), so you can use this as a
- * preconditioner. Some other function useful for matrices are also
- * available.
- *
- * A typical code snippet showing the above steps is as follows:
- * @verbatim
- *   ... // set up sparse matrix A and right hand side b somehow
- *
- *                     // initialize filtered matrix with
- *                     // matrix and boundary value constraints
- *   FilteredMatrix<SparseMatrix<double> > filtered_A (A);
- *   filtered_A.add_constraints (boundary_values);
- *
- *                     // set up a linear solver
- *   SolverControl control (1000, 1.e-10, false, false);
- *   PrimitiveVectorMemory<Vector<double> > mem;
- *   SolverCG<Vector<double> > solver (control, mem);
- *
- *                     // set up a preconditioner object
- *   PreconditionJacobi<FilteredMatrix<SparseMatrix<double> > > prec;
- *   prec.initialize (filtered_A, 1.2);
- *
- *                     // compute modification of right hand side
- *   filtered_A.apply_constraints (b, true);
- *
- *                     // solve for solution vector x
- *   solver.solve (filtered_A, x, b, prec);
- * @endverbatim
- *
  *
  * <h3>Template arguments</h3>
  *
@@ -191,26 +203,19 @@ template <typename number> class Vector;
  * bottleneck. If you don't want this serialization of operations, you
  * have to use several objects of this type.
  *
- * @author Wolfgang Bangerth 2001, Luca Heltai 2006
+ * @author Wolfgang Bangerth 2001, Luca Heltai 2006, Guido Kanschat 2007
  */
-template <class MATRIX, class VECTOR=Vector<typename MATRIX::value_type> >
+template <class VECTOR>
 class FilteredMatrix : public Subscriptor
 {
   public:
-                                    /**
-                                     * Type of matrix entries. In
-                                     * analogy to the STL container
-                                     * classes.
-                                     */
-    typedef typename MATRIX::value_type value_type;
-
                                     /**
                                      * Typedef defining a type that
                                      * represents a pair of degree of
                                      * freedom index and the value it
                                      * shall have.
                                      */
-    typedef std::pair<unsigned int,value_type> IndexValuePair;
+    typedef std::pair<unsigned int, double> IndexValuePair;
 
                                     /**
                                      * Default constructor. You will
@@ -228,12 +233,21 @@ class FilteredMatrix : public Subscriptor
                                      */
     FilteredMatrix (const FilteredMatrix &fm);
     
-                                    /**
+                                    /**
                                      * Constructor. Use the given
                                      * matrix for future operations.
+                                     *
+                                     * @arg @p m: The matrix being used in multiplications.
+                                     *
+                                     * @arg @p
+                                     * expect_constrained_source: See
+                                     * documentation of
+                                     * #expect_constrained_source.
                                      */
-    FilteredMatrix (const MATRIX &matrix);
-
+    template <class MATRIX>
+    FilteredMatrix (const MATRIX &matrix,
+                   bool expect_constrained_source = false);
+    
                                     /**
                                      * Copy operator. Take over
                                      * matrix and constraints from
@@ -248,16 +262,18 @@ class FilteredMatrix : public Subscriptor
                                      * clear_constraints()
                                      * function if constraits were
                                      * previously added.
+                                     *
+                                     * @arg @p m: The matrix being used in multiplications.
+                                     *
+                                     * @arg @p
+                                     * expect_constrained_source: See
+                                     * documentation of
+                                     * #expect_constrained_source.
                                      */
-    void set_referenced_matrix (const MATRIX &m);
+    template <class MATRIX>
+    void initialize (const MATRIX &m,
+                    bool expect_constrained_source = false);
     
-                                    /**
-                                     * Return a reference to the
-                                     * matrix that is used by this
-                                     * object.
-                                     */
-    const MATRIX & get_referenced_matrix () const;
-
                                     /**
                                      * Add a list of constraints to
                                      * the ones already managed by
@@ -275,6 +291,13 @@ class FilteredMatrix : public Subscriptor
                                      * but also a
                                      * <tt>std::map<unsigned,value_type></tt>.
                                      *
+                                     * The second component of these
+                                     * pairs will only be used in
+                                     * apply_constraints(). The first
+                                     * is used to set values to zero
+                                     * in matrix vector
+                                     * multiplications.
+                                     *
                                      * It is an error if the argument
                                      * contains an entry for a degree
                                      * of freedom that has already
@@ -305,22 +328,6 @@ class FilteredMatrix : public Subscriptor
     void apply_constraints (VECTOR     &v,
                            const bool  matrix_is_symmetric) const;
 
-                                    /**
-                                     * Return the dimension of the
-                                     * image space.  To remember: the
-                                     * matrix is of dimension
-                                     * $m \times n$.
-                                     */
-    unsigned int m () const;
-    
-                                    /**
-                                     * Return the dimension of the
-                                     * range space.  To remember: the
-                                     * matrix is of dimension
-                                     * $m \times n$.
-                                     */
-    unsigned int n () const;
-
                                     /**
                                      * Matrix-vector multiplication:
                                      * let $dst = M*src$ with $M$
@@ -352,81 +359,42 @@ class FilteredMatrix : public Subscriptor
                 const VECTOR &src) const;
   
                                     /**
-                                     * Return the square of the norm
-                                     * of the vector $v$ with respect
-                                     * to the norm induced by this
-                                     * matrix,
-                                     * i.e. $\left(v,Mv\right)$. This
-                                     * is useful, e.g. in the finite
-                                     * element context, where the
-                                     * $L_2$ norm of a function
-                                     * equals the matrix norm with
-                                     * respect to the mass matrix of
-                                     * the vector representing the
-                                     * nodal values of the finite
-                                     * element function.
-                                     *
-                                     * Obviously, the matrix needs to
-                                     * be square for this operation.
-                                     *
-                                     * Note that in many cases, you
-                                     * will not want to compute the
-                                     * norm with respect to the
-                                     * filtered matrix, but with
-                                     * respect to the original
-                                     * one. For example, if you want
-                                     * to compute the $L^2$ norm of a
-                                     * vector by forming the matrix
-                                     * norm with the mass matrix,
-                                     * then you want to use the
-                                     * original mass matrix, not the
-                                     * filtered one where you might
-                                     * have eliminated Dirichlet
-                                     * boundary values.
-                                     */
-    value_type matrix_norm_square (const VECTOR &v) const;
-
-                                    /**
-                                     * Compute the residual of an
-                                     * equation <tt>Mx=b</tt>, where the
-                                     * residual is defined to be
-                                     * <tt>r=b-Mx</tt> with @p x
-                                     * typically being an approximate
-                                     * of the true solution of the
-                                     * equation. Write the residual
-                                     * into @p dst. The l2 norm of
-                                     * the residual vector is
-                                     * returned.
+                                     * Adding matrix-vector multiplication.
                                      *
-                                     * Note that it is assumed that
-                                     * @p b is a vector that has been
-                                     * treated by the
-                                     * modify_rhs() function,
-                                     * since we can then assume that
-                                     * the components of the residual
-                                     * which correspond to
-                                     * constrained degrees of freedom
-                                     * do not contribute to the
-                                     * residual at all.
+                                     * @note The result vector of
+                                     * this multiplication will have
+                                     * the constraint entries set to
+                                     * zero, independent of the
+                                     * previous value of
+                                     * <tt>dst</tt>. We excpect that
+                                     * in most cases this is the
+                                     * required behavior.
                                      */
-    value_type residual (VECTOR       &dst,
-                        const VECTOR &x,
-                        const VECTOR &b) const;
+    void vmult_add (VECTOR       &dst,
+                   const VECTOR &src) const;
     
                                     /**
-                                     * Apply the Jacobi
-                                     * preconditioner, which
-                                     * multiplies every element of
-                                     * the @p src vector by the
-                                     * inverse of the respective
-                                     * diagonal element and
-                                     * multiplies the result with the
-                                     * damping factor @p omega.
+                                     * Adding transpose matrix-vector multiplication:
+                                     *
+                                     * Because we need to use a
+                                     * temporary variable and since
+                                     * we only allocate that each
+                                     * time the matrix changed, this
+                                     * function only works for
+                                     * quadratic matrices.
+                                     *
+                                     * @note The result vector of
+                                     * this multiplication will have
+                                     * the constraint entries set to
+                                     * zero, independent of the
+                                     * previous value of
+                                     * <tt>dst</tt>. We excpect that
+                                     * in most cases this is the
+                                     * required behavior.
                                      */
-    void precondition_Jacobi (VECTOR           &dst,
-                             const VECTOR     &src,
-                             const value_type  omega = 1.) const;
-
+    void Tvmult_add (VECTOR       &dst,
+                    const VECTOR &src) const;
+  
                                     /**
                                      * Determine an estimate for the
                                      * memory consumption (in bytes)
@@ -438,6 +406,27 @@ class FilteredMatrix : public Subscriptor
     unsigned int memory_consumption () const;
     
   private:
+                                    /**
+                                     * Determine, whether
+                                     * multiplications can expect
+                                     * that the source vector has all
+                                     * constrained entries set to
+                                     * zero.
+                                     *
+                                     * If so, the auxiliary vector
+                                     * can be avoided and memory as
+                                     * well as time can be saved.
+                                     *
+                                     * We expect this for instance in
+                                     * Newton's method, where the
+                                     * residual already should be
+                                     * zero on constrained
+                                     * nodes. This is, because there
+                                     * is no testfunction in these
+                                     * nodes.
+                                     */
+    bool expect_constrained_source;
+    
                                     /**
                                      * Declare an abbreviation for an
                                      * iterator into the array
@@ -474,7 +463,7 @@ class FilteredMatrix : public Subscriptor
                                      * it using the SmartPointer
                                      * class.
                                      */
-    SmartPointer<const MATRIX> matrix;
+    boost::shared_ptr<PointerMatrixBase<VECTOR> > matrix;
 
                                     /**
                                      * Sorted list of pairs denoting
@@ -525,32 +514,16 @@ class FilteredMatrix : public Subscriptor
                                      */
     void post_filter (const VECTOR &in,
                      VECTOR       &out) const;
-
-                                    /**
-                                     * Based on the size of the
-                                     * matrix and type of the matrix
-                                     * and vector, allocate a
-                                     * temporary vector. This
-                                     * function has to be overloaded
-                                     * for the various template
-                                     * parameter choices. Since the
-                                     * allocated vector will be
-                                     * filled by the site that calls
-                                     * this function, no
-                                     * initialization is necessary.
-                                     */
-    void allocate_tmp_vector ();
-
 };
 
 /*@}*/
 /*---------------------- Inline functions -----------------------------------*/
 
 
-template <class MATRIX, class VECTOR>
+template <class VECTOR>
 inline
 bool
-FilteredMatrix<MATRIX,VECTOR>::PairComparison::
+FilteredMatrix<VECTOR>::PairComparison::
 operator () (const IndexValuePair &i1,
             const IndexValuePair &i2) const
 {
@@ -559,10 +532,66 @@ operator () (const IndexValuePair &i1,
 
 
 
-template <class MATRIX, class VECTOR>
+template <class VECTOR>
+template <class MATRIX>
+inline
+void
+FilteredMatrix<VECTOR>::initialize (const MATRIX &m, bool ecs)
+{
+  matrix = boost::shared_ptr<PointerMatrixBase<VECTOR> > (
+    new_pointer_matrix_base(m, VECTOR()));
+  
+  expect_constrained_source = ecs;
+}
+
+
+
+template <class VECTOR>
+FilteredMatrix<VECTOR>::FilteredMatrix ()
+{}
+
+
+
+template <class VECTOR>
+FilteredMatrix<VECTOR>::
+FilteredMatrix (const FilteredMatrix &fm)
+               :
+               Subscriptor(),
+               constraints (fm.constraints)
+{
+  initialize (*fm.matrix, fm.expect_constrained_source);
+}
+
+
+
+template <class VECTOR>
+template <class MATRIX>
+inline
+FilteredMatrix<VECTOR>::
+FilteredMatrix (const MATRIX &m, bool ecs)
+{
+  initialize (m, ecs);
+}
+
+
+
+template <class VECTOR>
+inline
+FilteredMatrix<VECTOR> &
+FilteredMatrix<VECTOR>::operator = (const FilteredMatrix &fm)
+{
+  matrix = fm.matrix;
+  expect_constrained_source = fm.expect_constrained_source;
+  constraints = fm.constraints;
+  return *this;
+}
+
+
+
+template <class VECTOR>
 template <class ConstraintList>
 void
-FilteredMatrix<MATRIX,VECTOR>::
+FilteredMatrix<VECTOR>::
 add_constraints (const ConstraintList &new_constraints)
 {
                                   // add new constraints to end
@@ -581,34 +610,190 @@ add_constraints (const ConstraintList &new_constraints)
 
 
 
-template <class MATRIX, class VECTOR>
+template <class VECTOR>
+inline
+void
+FilteredMatrix<VECTOR>::clear_constraints ()
+{
+                                  // swap vectors to release memory
+  std::vector<IndexValuePair> empty;
+  constraints.swap (empty);
+}
+
+
+
+template <class VECTOR>
+inline
+void
+FilteredMatrix<VECTOR>::
+apply_constraints (VECTOR     &v,
+                  const bool  /* matrix_is_symmetric */) const
+{
+    tmp_vector.reinit(v);
+    const_index_value_iterator       i = constraints.begin();
+    const const_index_value_iterator e = constraints.end();
+    for (; i!=e; ++i)
+       tmp_vector(i->first) = -i->second;
+
+    // This vmult is without bc, to get the rhs correction in a correct way.
+    matrix->vmult_add(v, tmp_vector);
+
+    // finally set constrained entries themselves
+    for (i=constraints.begin(); i!=e; ++i)
+       v(i->first) = i->second;
+}
+
+
+
+template <class VECTOR>
 inline
-const MATRIX &
-FilteredMatrix<MATRIX,VECTOR>::get_referenced_matrix () const
+void
+FilteredMatrix<VECTOR>::pre_filter (VECTOR &v) const
 {
-  return *matrix;
+    // iterate over all constraints and
+    // zero out value
+    const_index_value_iterator       i = constraints.begin();
+    const const_index_value_iterator e = constraints.end();
+    for (; i!=e; ++i)
+       v(i->first) = 0;
 }
 
 
 
-template <class MATRIX, class VECTOR>
+template <class VECTOR>
 inline
-unsigned int FilteredMatrix<MATRIX,VECTOR>::m () const
+void
+FilteredMatrix<VECTOR>::post_filter (const VECTOR &in,
+       VECTOR       &out) const
 {
-  return matrix->m();
+    // iterate over all constraints and
+    // set value correctly
+    const_index_value_iterator       i = constraints.begin();
+    const const_index_value_iterator e = constraints.end();
+    for (; i!=e; ++i)
+       out(i->first) = in(i->first);
 }
 
 
 
-template <class MATRIX, class VECTOR>
+template <class VECTOR>
 inline
-unsigned int FilteredMatrix<MATRIX,VECTOR>::n () const
+void
+FilteredMatrix<VECTOR>::vmult (VECTOR& dst, const VECTOR& src) const
 {
-  return matrix->n();
+  if (!expect_constrained_source)
+    {
+      tmp_mutex.acquire ();
+                                      // first copy over src vector and
+                                      // pre-filter
+      tmp_vector.reinit(src, true);
+      tmp_vector = src;
+      pre_filter (tmp_vector);
+                                      // then let matrix do its work
+      matrix->vmult (dst, tmp_vector);
+                                      // tmp_vector now no more needed
+      tmp_mutex.release ();
+    }
+  else
+    matrix->vmult (dst, src);
+    // finally do post-filtering
+    post_filter (src, dst);
 }
 
 
 
+template <class VECTOR>
+inline
+void
+FilteredMatrix<VECTOR>::Tvmult (VECTOR& dst, const VECTOR& src) const
+{
+  if (!expect_constrained_source)
+    {
+      tmp_mutex.acquire ();
+                                      // first copy over src vector and
+                                      // pre-filter
+      tmp_vector.reinit(src, true);
+      tmp_vector = src;
+      pre_filter (tmp_vector);
+                                      // then let matrix do its work
+      matrix->Tvmult (dst, tmp_vector);
+                                      // tmp_vector now no more needed
+      tmp_mutex.release ();
+    }
+  else
+    matrix->Tvmult (dst, src);  
+                                  // finally do post-filtering
+  post_filter (src, dst);
+}
+
+
+
+template <class VECTOR>
+inline
+void
+FilteredMatrix<VECTOR>::vmult_add (VECTOR& dst, const VECTOR& src) const
+{
+  if (!expect_constrained_source)
+    {
+      tmp_mutex.acquire ();
+                                      // first copy over src vector and
+                                      // pre-filter
+      tmp_vector.reinit(src, true);
+      tmp_vector = src;
+      pre_filter (tmp_vector);
+                                      // then let matrix do its work
+      matrix->vmult_add (dst, tmp_vector);
+                                      // tmp_vector now no more needed
+      tmp_mutex.release ();
+    }
+  else
+    matrix->vmult_add (dst, src);
+    // finally do post-filtering
+    post_filter (src, dst);
+}
+
+
+
+template <class VECTOR>
+inline
+void
+FilteredMatrix<VECTOR>::Tvmult_add (VECTOR& dst, const VECTOR& src) const
+{
+  if (!expect_constrained_source)
+    {
+      tmp_mutex.acquire ();
+                                      // first copy over src vector and
+                                      // pre-filter
+      tmp_vector.reinit(src, true);
+      tmp_vector = src;
+      pre_filter (tmp_vector);
+                                      // then let matrix do its work
+      matrix->Tvmult_add (dst, tmp_vector);
+                                      // tmp_vector now no more needed
+      tmp_mutex.release ();
+    }
+  else
+    matrix->Tvmult_add (dst, src);  
+                                  // finally do post-filtering
+  post_filter (src, dst);
+}
+
+
+
+template <class VECTOR>
+inline
+unsigned int
+FilteredMatrix<VECTOR>::memory_consumption () const
+{
+    return (MemoryConsumption::memory_consumption (matrix) +
+           MemoryConsumption::memory_consumption (constraints) +
+           MemoryConsumption::memory_consumption (tmp_vector));
+}
+
+
+
+
+
 /*----------------------------   filtered_matrix.h     ---------------------------*/
 
 DEAL_II_NAMESPACE_CLOSE
diff --git a/deal.II/lac/include/lac/filtered_matrix.templates.h b/deal.II/lac/include/lac/filtered_matrix.templates.h
deleted file mode 100644 (file)
index 6b9f20e..0000000
+++ /dev/null
@@ -1,272 +0,0 @@
-//---------------------------------------------------------------------------
-//    $Id$
-//    Version: $Name$
-//
-//    Copyright (C) 2001, 2002, 2003, 2005, 2006 by the deal.II authors
-//
-//    This file is subject to QPL and may not be  distributed
-//    without copyright and license information. Please refer
-//    to the file deal.II/doc/license.html for the  text  and
-//    further information on this license.
-//
-//---------------------------------------------------------------------------
-#ifndef __deal2__filtered_matrix_templates_h
-#define __deal2__filtered_matrix_templates_h
-
-
-#include <base/config.h>
-#include <base/memory_consumption.h>
-#include <lac/filtered_matrix.h>
-#include <lac/sparse_matrix.h>
-#include <lac/block_sparse_matrix.h>
-#include <lac/vector.h>
-#include <lac/block_vector.h>
-
-DEAL_II_NAMESPACE_OPEN
-
-
-template <class MATRIX, class VECTOR>
-FilteredMatrix<MATRIX,VECTOR>::FilteredMatrix ()
-{}
-
-template <class MATRIX, class VECTOR>
-FilteredMatrix<MATRIX,VECTOR>::
-FilteredMatrix (const FilteredMatrix &fm)
-               :
-               Subscriptor (),
-               constraints (fm.constraints)
-{
-  set_referenced_matrix (*fm.matrix);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-FilteredMatrix<MATRIX,VECTOR>::
-FilteredMatrix (const MATRIX &m)
-{
-  set_referenced_matrix (m);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-FilteredMatrix<MATRIX,VECTOR> &
-FilteredMatrix<MATRIX,VECTOR>::operator = (const FilteredMatrix &fm)
-{
-  set_referenced_matrix (*fm.matrix);
-  constraints = fm.constraints;
-  return *this;
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::
-set_referenced_matrix (const MATRIX &m)
-{
-  matrix = &m;
-  allocate_tmp_vector();
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::clear_constraints ()
-{
-                                  // swap vectors to release memory
-  std::vector<IndexValuePair> empty;
-  constraints.swap (empty);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::
-apply_constraints (VECTOR     &v,
-                  const bool  /* matrix_is_symmetric */) const
-{
-    tmp_vector = 0;
-    const_index_value_iterator       i = constraints.begin();
-    const const_index_value_iterator e = constraints.end();
-    for (; i!=e; ++i)
-       tmp_vector(i->first) = -i->second;
-
-    // This vmult is without bc, to get the rhs correction in a correct way.
-    matrix->vmult_add(v, tmp_vector);
-
-    // finally set constrained entries themselves
-    for (i=constraints.begin(); i!=e; ++i)
-       v(i->first) = i->second;
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::pre_filter (VECTOR &v) const
-{
-    // iterate over all constraints and
-    // zero out value
-    const_index_value_iterator       i = constraints.begin();
-    const const_index_value_iterator e = constraints.end();
-    for (; i!=e; ++i)
-       v(i->first) = 0;
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::post_filter (const VECTOR &in,
-       VECTOR       &out) const
-{
-    // iterate over all constraints and
-    // set value correctly
-    const_index_value_iterator       i = constraints.begin();
-    const const_index_value_iterator e = constraints.end();
-    for (; i!=e; ++i)
-       out(i->first) = in(i->first);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::vmult (VECTOR       &dst,
-       const VECTOR &src) const
-{
-    tmp_mutex.acquire ();
-    // first copy over src vector and
-    // pre-filter
-    tmp_vector = src;
-    pre_filter (tmp_vector);
-    // then let matrix do its work
-    matrix->vmult (dst, tmp_vector);
-    // tmp_vector now no more needed
-    tmp_mutex.release ();
-    // finally do post-filtering
-    post_filter (src, dst);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-typename FilteredMatrix<MATRIX,VECTOR>::value_type
-FilteredMatrix<MATRIX,VECTOR>::residual (VECTOR       &dst,
-       const VECTOR &x,
-       const VECTOR &b) const
-{
-    tmp_mutex.acquire ();
-    // first copy over x vector and
-    // pre-filter
-    tmp_vector = x;
-    pre_filter (tmp_vector);
-    // then let matrix do its work
-    value_type res  = matrix->residual (dst, tmp_vector, b);
-    value_type res2 = res*res;
-    // tmp_vector now no more needed
-    tmp_mutex.release ();
-    // finally do post-filtering. here,
-    // we set constrained indices to
-    // zero, but have to subtract their
-    // contributions to the residual
-    const_index_value_iterator       i = constraints.begin();
-    const const_index_value_iterator e = constraints.end();
-    for (; i!=e; ++i)
-    {
-       const value_type v = dst(i->first);
-       res2 -= v*v;
-       dst(i->first) = 0;
-    };
-
-    Assert (res2>=0, ExcInternalError());
-    return std::sqrt (res2);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::Tvmult (VECTOR       &dst,
-       const VECTOR &src) const
-{
-    tmp_mutex.acquire ();
-    // first copy over src vector and
-    // pre-filter
-    tmp_vector = src;
-    pre_filter (tmp_vector);
-    // then let matrix do its work
-    matrix->Tvmult (dst, tmp_vector);
-    // tmp_vector now no more needed
-    tmp_mutex.release ();
-    // finally do post-filtering
-    post_filter (src, dst);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-typename FilteredMatrix<MATRIX,VECTOR>::value_type
-FilteredMatrix<MATRIX,VECTOR>::matrix_norm_square (const VECTOR &v) const
-{
-    tmp_mutex.acquire ();
-    tmp_vector = v;
-
-    // zero out constrained entries and
-    // form matrix norm with original
-    // matrix. this is equivalent to
-    // forming the matrix norm of the
-    // original vector with the matrix
-    // where we have zeroed out rows
-    // and columns
-    pre_filter (tmp_vector);
-    const value_type ret = matrix->matrix_norm_square (tmp_vector);
-    tmp_mutex.release ();
-    return ret;
-}
-
-
-
-template <class MATRIX, class VECTOR>
-void
-FilteredMatrix<MATRIX,VECTOR>::
-precondition_Jacobi (VECTOR           &dst,
-       const VECTOR     &src,
-       const value_type  omega) const
-{
-    // first precondition as usual,
-    // using the fast algorithms of the
-    // matrix class
-    matrix->precondition_Jacobi (dst, src, omega);
-
-    // then modify the constrained
-    // degree of freedom. as the
-    // diagonal entries of the filtered
-    // matrix would be 1.0, simply copy
-    // over old and new values
-    const_index_value_iterator       i = constraints.begin();
-    const const_index_value_iterator e = constraints.end();
-    for (; i!=e; ++i)
-       dst(i->first) = src(i->first);
-}
-
-
-
-template <class MATRIX, class VECTOR>
-unsigned int
-FilteredMatrix<MATRIX,VECTOR>::memory_consumption () const
-{
-    return (MemoryConsumption::memory_consumption (matrix) +
-           MemoryConsumption::memory_consumption (constraints) +
-           MemoryConsumption::memory_consumption (tmp_vector));
-}
-
-
-
-DEAL_II_NAMESPACE_CLOSE
-
-#endif
index e97391c8282198ef2dc0c99182808a0c4fffe496..a216440c2f6c4c3be12fb000442773a3fabae470 100644 (file)
@@ -2,7 +2,7 @@
 //    $Id$
 //    Version: $Name$
 //
-//    Copyright (C) 2001, 2002, 2003, 2004, 2006 by the deal.II authors
+//    Copyright (C) 2001, 2002, 2003, 2004, 2006, 2007 by the deal.II authors
 //
 //    This file is subject to QPL and may not be  distributed
 //    without copyright and license information. Please refer
 
 DEAL_II_NAMESPACE_OPEN
 
-#define FILT(MM,VV) \
-template <> \
-void FilteredMatrix<MM , VV >::allocate_tmp_vector() \
-{\
-    Threads::ThreadMutex::ScopedLock lock (tmp_mutex);  \
-    tmp_vector.reinit (matrix->n(), true);  \
-}
-
-#define BFILT(MM,VV) \
-template <>   \
-void   \
-FilteredMatrix<MM ,VV >::   \
-allocate_tmp_vector ()    \
-{   \
-  std::vector<unsigned int> block_sizes (matrix->n_block_rows());   \
-  for (unsigned int i=0; i<block_sizes.size(); ++i)   \
-    block_sizes[i] = matrix->block(i,i).n();   \
-     \
-  Threads::ThreadMutex::ScopedLock lock (tmp_mutex);   \
-  tmp_vector.reinit (block_sizes, true);   \
-}
-
-FILT(SparseMatrix<double>, Vector<double>)
-BFILT(BlockSparseMatrix<double>, BlockVector<double>)
-template class FilteredMatrix<SparseMatrix<double>,Vector<double> >;
-template class FilteredMatrix<BlockSparseMatrix<double>,BlockVector<double> >;
-
-FILT(SparseMatrix<float>, Vector<float>)
-BFILT(BlockSparseMatrix<float>, BlockVector<float>)
-template class FilteredMatrix<SparseMatrix<float>,Vector<float> >;
-template class FilteredMatrix<BlockSparseMatrix<float>,BlockVector<float> >;
+template class FilteredMatrix<Vector<double> >;
+template class FilteredMatrix<BlockVector<double> >;
+template class FilteredMatrix<Vector<float> >;
+template class FilteredMatrix<BlockVector<float> >;
 
 DEAL_II_NAMESPACE_CLOSE

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.