const SymmetricTensor<4, dim> Jc = lqph[q_point]->get_Jc();
const double d2Psi_vol_dJ2 = lqph[q_point]->get_d2Psi_vol_dJ2();
const double det_F = lqph[q_point]->get_det_F();
+ const SymmetricTensor<2, dim> &I =
+ Physics::Elasticity::StandardTensors<dim>::I;
// Next we define some aliases to make the assembly process easier to
// follow
// the local matrix diagonals:
if ((i_group == j_group) && (i_group == u_dof))
{
- data.cell_matrix(i, j) += symm_grad_Nx[i] *
- Jc // The material contribution:
- * symm_grad_Nx[j] * JxW;
- if (component_i ==
- component_j) // geometrical stress contribution
+ // The material contribution:
+ data.cell_matrix(i, j) += symm_grad_Nx[i] * Jc * //
+ symm_grad_Nx[j] * JxW; //
+
+ // The geometrical stress contribution:
+ if (component_i == component_j)
data.cell_matrix(i, j) += grad_Nx[i][component_i] * tau *
grad_Nx[j][component_j] * JxW;
}
// contribution
else if ((i_group == p_dof) && (j_group == u_dof))
{
- data.cell_matrix(i, j) +=
- N[i] * det_F *
- (symm_grad_Nx[j] *
- Physics::Elasticity::StandardTensors<dim>::I) *
- JxW;
+ data.cell_matrix(i, j) += N[i] * det_F * //
+ (symm_grad_Nx[j] * I) * JxW; //
}
// and lastly the $\mathsf{\mathbf{k}}_{ \widetilde{J}
// \widetilde{p}}$ and $\mathsf{\mathbf{k}}_{ \widetilde{J}