]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Finish documentation.
authorWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 3 Jan 2011 06:28:39 +0000 (06:28 +0000)
committerWolfgang Bangerth <bangerth@math.tamu.edu>
Mon, 3 Jan 2011 06:28:39 +0000 (06:28 +0000)
git-svn-id: https://svn.dealii.org/trunk@23106 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/examples/step-38/step-38.cc

index 5af6e3cc75d895e47f8ea699d25c911c6dc690aa..4c7459060caaf52b0d366b0ebbaa6b04ccac4f4f 100644 (file)
@@ -281,31 +281,107 @@ RightHandSide<3>::value (const Point<3> &p,
 
                                  // @sect3{Implementation of the <code>LaplaceBeltramiProblem</code> class}
 
+                                // The rest of the program is actually quite
+                                // unspectacular if you know step-4. Our
+                                // first step is to define the constructor,
+                                // setting the polynomial degree of the
+                                // finite element and mapping, and
+                                // associating the DoF handler to the
+                                // triangulation:
 template <int spacedim>
 LaplaceBeltramiProblem<spacedim>::
 LaplaceBeltramiProblem (const unsigned degree)
                :
                fe (degree),
                dof_handler(triangulation),
-               mapping(degree)
+               mapping (degree)
 {}
 
 
-
+                                 // @sect4{LaplaceBeltramiProblem::make_grid_and_dofs}
+
+                                // The next step is to create the mesh,
+                                // distribute degrees of freedom, and set up
+                                // the various variables that describe the
+                                // linear system. All of these steps are
+                                // standard with the exception of how to
+                                // create a mesh that describes a surface. We
+                                // could generate a mesh for the domain we
+                                // are interested in, generate a
+                                // triangulation using a mesh generator, and
+                                // read it in using the GridIn class. Or, as
+                                // we do here, we generate the mesh using the
+                                // facilities in the GridGenerator namespace.
+                                //
+                                // In particular, what we're going to do is
+                                // this (enclosed between the set of braces
+                                // below): we generate a
+                                // <code>spacedim</code> dimensional mesh for
+                                // the half disk (in 2d) or half ball (in
+                                // 3d), using the
+                                // GridGenerator::half_hyper_ball
+                                // function. This function sets the boundary
+                                // indicators of all faces on the outside of
+                                // the boundary to zero for the ones located
+                                // on the perimeter of the disk/ball, and one
+                                // on the straight part that splits the full
+                                // disk/ball into two halves. The next step
+                                // is the main point: The
+                                // GridTools::extract_boundary_mesh function
+                                // creates a mesh that consists of those
+                                // cells that are the faces of the previous
+                                // mesh, i.e. it describes the <i>surface</i>
+                                // cells of the original (volume)
+                                // mesh. However, we do not want all faces:
+                                // only those on the perimeter of the disk or
+                                // ball which carry boundary indicator zero;
+                                // we can select these cells using a set of
+                                // boundary indicators that we pass to
+                                // GridTools::extract_boundary_mesh.
+                                //
+                                // There is one point that needs to be
+                                // mentioned. In order to refine a surface
+                                // mesh appropriately if the manifold is
+                                // curved (similarly to refining the faces of
+                                // cells that are adjacent to a curved
+                                // boundary), the triangulation has to have
+                                // an object attached to it that described
+                                // where new vertices should be located. If
+                                // you don't attach such a boundary object,
+                                // they will be located halfway between
+                                // existing vertices; this is appropriate if
+                                // you have a domain with straight boundaries
+                                // (e.g. a polygon) but not when, as here,
+                                // the manifold has curvature. So for things
+                                // to work properly, we need to attach a
+                                // manifold object to our (surface)
+                                // triangulation. We create such an object
+                                // (with indefinite, <code>static</code>,
+                                // lifetime) at the top of the function and
+                                // attach it to the triangulation for all
+                                // cells with boundary indicator zero that
+                                // will be created henceforth.
+                                //
+                                // The final step in creating the mesh is to
+                                // refine it a number of times. The rest of
+                                // the function is the same as in previous
+                                // tutorial programs.
 template <int spacedim>
 void LaplaceBeltramiProblem<spacedim>::make_grid_and_dofs ()
 {
-  Triangulation<spacedim> volume_mesh;
-  GridGenerator::half_hyper_ball(volume_mesh);
-  
   static HyperBallBoundary<dim,spacedim> surface_description;
   triangulation.set_boundary (0, surface_description);
   
-  std::set<unsigned char> boundary_ids;
-  boundary_ids.insert(0);
+  {
+    Triangulation<spacedim> volume_mesh;
+    GridGenerator::half_hyper_ball(volume_mesh);
+  
+    std::set<unsigned char> boundary_ids;
+    boundary_ids.insert (0);
   
-  GridTools::extract_boundary_mesh (volume_mesh, triangulation,
-                                   boundary_ids);
+    GridTools::extract_boundary_mesh (volume_mesh, triangulation,
+                                     boundary_ids);
+  }
   triangulation.refine_global(4);
 
   std::cout << "Surface mesh has " << triangulation.n_active_cells()
@@ -329,34 +405,50 @@ void LaplaceBeltramiProblem<spacedim>::make_grid_and_dofs ()
 }
 
 
+                                 // @sect4{LaplaceBeltramiProblem::assemble_system}
+
+                                // The following is the central function of
+                                // this program, assembling the matrix that
+                                // corresponds to the surface Laplacian
+                                // (Laplace-Beltrami operator). Maybe
+                                // surprisingly, it actually looks exactly
+                                // the same as for the regular Laplace
+                                // operator discussed in, for example,
+                                // step-4. The key is that the
+                                // FEValues::shape_gradient function does the
+                                // magic: It returns the surface gradient
+                                // $\nabla_K \phi_i(x_q)$ of the $i$th shape
+                                // function at the $q$th quadrature
+                                // point. The rest then does not need any
+                                // changes either:
 template <int spacedim>
 void LaplaceBeltramiProblem<spacedim>::assemble_system () 
 {
   system_matrix = 0;
   system_rhs = 0;
   
-  QGauss<dim>  quadrature_formula(2);
-
+  const QGauss<dim>  quadrature_formula(2);
   FEValues<dim,spacedim> fe_values (mapping, fe, quadrature_formula, 
                                    update_values              |
                                    update_gradients           |
                                    update_quadrature_points   |
                                    update_JxW_values);
 
-  const unsigned int   dofs_per_cell = fe.dofs_per_cell;
-  const unsigned int   n_q_points    = quadrature_formula.size();
+  const unsigned int        dofs_per_cell = fe.dofs_per_cell;
+  const unsigned int        n_q_points    = quadrature_formula.size();
 
-  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell);
-  Vector<double>       cell_rhs (dofs_per_cell);
+  FullMatrix<double>        cell_matrix (dofs_per_cell, dofs_per_cell);
+  Vector<double>            cell_rhs (dofs_per_cell);
 
-  std::vector< double > rhs_values(n_q_points);
+  std::vector<double>       rhs_values(n_q_points);
   std::vector<unsigned int> local_dof_indices (dofs_per_cell);
 
   const RightHandSide<spacedim> rhs;
   
   for (typename DoFHandler<dim,spacedim>::active_cell_iterator
         cell = dof_handler.begin_active(),
-        endc = dof_handler.end(); cell!=endc; ++cell)
+        endc = dof_handler.end();
+       cell!=endc; ++cell)
     {
       cell_matrix = 0;
       cell_rhs = 0;
@@ -368,10 +460,9 @@ void LaplaceBeltramiProblem<spacedim>::assemble_system ()
       for (unsigned int i=0; i<dofs_per_cell; ++i)
        for (unsigned int j=0; j<dofs_per_cell; ++j) 
          for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
-           cell_matrix(i,j) 
-             += fe_values.shape_grad(i,q_point) *
-             fe_values.shape_grad(j,q_point) *
-             fe_values.JxW(q_point);
+           cell_matrix(i,j) += fe_values.shape_grad(i,q_point) *
+                               fe_values.shape_grad(j,q_point) *
+                               fe_values.JxW(q_point);
       
       for (unsigned int i=0; i<dofs_per_cell; ++i)
        for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
@@ -391,7 +482,6 @@ void LaplaceBeltramiProblem<spacedim>::assemble_system ()
        }
     }
 
-
   std::map<unsigned int,double> boundary_values; 
   VectorTools::interpolate_boundary_values (mapping,
                                            dof_handler,
@@ -406,10 +496,17 @@ void LaplaceBeltramiProblem<spacedim>::assemble_system ()
 }
 
 
+
+                                 // @sect4{LaplaceBeltramiProblem::solve}
+
+                                // The next function is the one that solves
+                                // the linear system. Here, too, no changes
+                                // are necessary:
 template <int spacedim>
 void LaplaceBeltramiProblem<spacedim>::solve () 
 {
-  SolverControl solver_control (solution.size(), 1e-7);
+  SolverControl solver_control (solution.size(),
+                               1e-7 * system_rhs.l2_norm());
   SolverCG<>    cg (solver_control);
 
   PreconditionSSOR<> preconditioner;
@@ -421,12 +518,57 @@ void LaplaceBeltramiProblem<spacedim>::solve ()
 
 
 
+                                 // @sect4{LaplaceBeltramiProblem::output_result}
+
+                                // This is the function that generates
+                                // graphical output from the solution. Most
+                                // of it is boilerplate code, but there are
+                                // two points worth pointing out:
+                                //
+                                // - The DataOut::add_data_vector function
+                                //   can take two kinds of vectors: Either
+                                //   vectors that have one value per degree
+                                //   of freedom defined by the DoFHandler
+                                //   object previously attached via
+                                //   DataOut::attach_dof_handler; and vectors
+                                //   that have one value for each cell of the
+                                //   triangulation, for example to output
+                                //   estimated errors for each
+                                //   cell. Typically, the DataOut class knows
+                                //   to tell these two kinds of vectors
+                                //   apart: there are almost always more
+                                //   degrees of freedom than cells, so we can
+                                //   differentiate by the two kinds looking
+                                //   at the length of a vector. We could do
+                                //   the same here, but only because we got
+                                //   lucky: we use a half sphere. If we had
+                                //   used the whole sphere as domain and
+                                //   $Q_1$ elements, we would have the same
+                                //   number of cells as vertices and
+                                //   consequently the two kinds of vectors
+                                //   would have the same number of
+                                //   elements. To avoid the resulting
+                                //   confusion, we have to tell the
+                                //   DataOut::add_data_vector function which
+                                //   kind of vector we have: DoF data. This
+                                //   is what the third argument to the
+                                //   function does.
+                                // - The DataOut::build_patches function can
+                                //   generate output that subdivides each
+                                //   cell so that visualization programs can
+                                //   resolve curved manifolds or higher
+                                //   polynomial degree shape functions
+                                //   better. We here subdivide each element
+                                //   in each coordinate direction as many
+                                //   times as the polynomial degree of the
+                                //   finite element in use.
 template <int spacedim>
 void LaplaceBeltramiProblem<spacedim>::output_results () const
 {
   DataOut<dim,DoFHandler<dim,spacedim> > data_out;
   data_out.attach_dof_handler (dof_handler);
-  data_out.add_data_vector (solution, "solution",
+  data_out.add_data_vector (solution,
+                           "solution",
                            DataOut<dim,DoFHandler<dim,spacedim> >::type_dof_data);
   data_out.build_patches (mapping,
                          mapping.get_degree());
@@ -439,6 +581,19 @@ void LaplaceBeltramiProblem<spacedim>::output_results () const
 
 
 
+                                 // @sect4{LaplaceBeltramiProblem::compute_error}
+
+                                // This is the last piece of functionality:
+                                // we want to compute the error in the
+                                // numerical solution. It is a verbatim copy
+                                // of the code previously shown and discussed
+                                // in step-7. As mentioned in the
+                                // introduction, the <code>Solution</code>
+                                // class provides the (tangential) gradient
+                                // of the solution. To avoid evaluating the
+                                // error only a superconvergence points, we
+                                // choose a quadrature rule of sufficiently
+                                // high order.
 template <int spacedim>
 void LaplaceBeltramiProblem<spacedim>::compute_error () const
 {  
@@ -456,6 +611,10 @@ void LaplaceBeltramiProblem<spacedim>::compute_error () const
 
 
 
+                                 // @sect4{LaplaceBeltramiProblem::run}
+
+                                // The last function provides the top-level
+                                // logic. Its contents are self-explanatory:
 template <int spacedim>
 void LaplaceBeltramiProblem<spacedim>::run () 
 {

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.