--- /dev/null
+/* Author: Wolfgang Bangerth, Texas A&M University, 2008 */
+
+/* $Id: step-22.cc 25840 2012-08-09 20:22:00Z bangerth $ */
+/* */
+/* Copyright (C) 2008, 2009, 2010, 2011, 2012 by the deal.II authors */
+/* */
+/* This file is subject to QPL and may not be distributed */
+/* without copyright and license information. Please refer */
+/* to the file deal.II/doc/license.html for the text and */
+/* further information on this license. */
+
+
+ // @sect3{Include files}
+
+ // As usual, we start by including
+ // some well-known files:
+#include <deal.II/base/quadrature_lib.h>
+#include <deal.II/base/logstream.h>
+#include <deal.II/base/function.h>
+#include <deal.II/base/utilities.h>
+
+#include <deal.II/lac/block_vector.h>
+#include <deal.II/lac/full_matrix.h>
+#include <deal.II/lac/block_sparse_matrix.h>
+#include <deal.II/lac/solver_cg.h>
+#include <deal.II/lac/precondition.h>
+#include <deal.II/lac/constraint_matrix.h>
+
+#include <deal.II/grid/tria.h>
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/tria_accessor.h>
+#include <deal.II/grid/tria_iterator.h>
+#include <deal.II/grid/tria_boundary_lib.h>
+#include <deal.II/grid/grid_tools.h>
+#include <deal.II/grid/grid_refinement.h>
+
+#include <deal.II/dofs/dof_handler.h>
+#include <deal.II/dofs/dof_renumbering.h>
+#include <deal.II/dofs/dof_accessor.h>
+#include <deal.II/dofs/dof_tools.h>
+
+#include <deal.II/fe/fe_q.h>
+#include <deal.II/fe/fe_system.h>
+#include <deal.II/fe/fe_values.h>
+
+#include <deal.II/numerics/vector_tools.h>
+#include <deal.II/numerics/matrix_tools.h>
+#include <deal.II/numerics/data_out.h>
+#include <deal.II/numerics/error_estimator.h>
+
+ // Then we need to include the header file
+ // for the sparse direct solver UMFPACK:
+#include <deal.II/lac/sparse_direct.h>
+
+ // This includes the library for the
+ // incomplete LU factorization that will
+ // be used as a preconditioner in 3D:
+#include <deal.II/lac/sparse_ilu.h>
+
+ // This is C++:
+#include <fstream>
+#include <sstream>
+
+ // As in all programs, the namespace dealii
+ // is included:
+namespace Step22
+{
+ using namespace dealii;
+
+ // @sect3{Defining the inner preconditioner type}
+
+ // As explained in the introduction, we are
+ // going to use different preconditioners for
+ // two and three space dimensions,
+ // respectively. We distinguish between
+ // them by the use of the spatial dimension
+ // as a template parameter. See step-4 for
+ // details on templates. We are not going to
+ // create any preconditioner object here, all
+ // we do is to create class that holds a
+ // local typedef determining the
+ // preconditioner class so we can write our
+ // program in a dimension-independent way.
+ template <int dim>
+ struct InnerPreconditioner;
+
+ // In 2D, we are going to use a sparse direct
+ // solver as preconditioner:
+ template <>
+ struct InnerPreconditioner<2>
+ {
+ typedef SparseDirectUMFPACK type;
+ };
+
+ // And the ILU preconditioning in 3D, called
+ // by SparseILU:
+ template <>
+ struct InnerPreconditioner<3>
+ {
+ typedef SparseILU<double> type;
+ };
+
+
+ // @sect3{The <code>StokesProblem</code> class template}
+
+ // This is an adaptation of step-20, so the
+ // main class and the data types are the
+ // same as used there. In this example we
+ // also use adaptive grid refinement, which
+ // is handled in analogy to
+ // step-6. According to the discussion in
+ // the introduction, we are also going to
+ // use the ConstraintMatrix for
+ // implementing Dirichlet boundary
+ // conditions. Hence, we change the name
+ // <code>hanging_node_constraints</code>
+ // into <code>constraints</code>.
+ template <int dim>
+ class StokesProblem
+ {
+ public:
+ StokesProblem (const unsigned int degree);
+ void run ();
+
+ private:
+ void setup_dofs ();
+ void assemble_system ();
+ void solve ();
+ void output_results (const unsigned int refinement_cycle) const;
+ void refine_mesh ();
+
+ const unsigned int degree;
+
+ Triangulation<dim> triangulation;
+ FESystem<dim> fe;
+ DoFHandler<dim> dof_handler;
+
+ ConstraintMatrix constraints;
+
+ BlockSparsityPattern sparsity_pattern;
+ BlockSparseMatrix<double> system_matrix;
+
+ BlockVector<double> solution;
+ BlockVector<double> system_rhs;
+
+ // This one is new: We shall use a
+ // so-called shared pointer structure to
+ // access the preconditioner. Shared
+ // pointers are essentially just a
+ // convenient form of pointers. Several
+ // shared pointers can point to the same
+ // object (just like regular pointers),
+ // but when the last shared pointer
+ // object to point to a preconditioner
+ // object is deleted (for example if a
+ // shared pointer object goes out of
+ // scope, if the class of which it is a
+ // member is destroyed, or if the pointer
+ // is assigned a different preconditioner
+ // object) then the preconditioner object
+ // pointed to is also destroyed. This
+ // ensures that we don't have to manually
+ // track in how many places a
+ // preconditioner object is still
+ // referenced, it can never create a
+ // memory leak, and can never produce a
+ // dangling pointer to an already
+ // destroyed object:
+ std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type> A_preconditioner;
+ };
+
+ // @sect3{Boundary values and right hand side}
+
+ // As in step-20 and most other
+ // example programs, the next task is
+ // to define the data for the PDE:
+ // For the Stokes problem, we are
+ // going to use natural boundary
+ // values on parts of the boundary
+ // (i.e. homogenous Neumann-type) for
+ // which we won't have to do anything
+ // special (the homogeneity implies
+ // that the corresponding terms in
+ // the weak form are simply zero),
+ // and boundary conditions on the
+ // velocity (Dirichlet-type) on the
+ // rest of the boundary, as described
+ // in the introduction.
+ //
+ // In order to enforce the Dirichlet
+ // boundary values on the velocity,
+ // we will use the
+ // VectorTools::interpolate_boundary_values
+ // function as usual which requires
+ // us to write a function object with
+ // as many components as the finite
+ // element has. In other words, we
+ // have to define the function on the
+ // $(u,p)$-space, but we are going to
+ // filter out the pressure component
+ // when interpolating the boundary
+ // values.
+
+ // The following function object is a
+ // representation of the boundary
+ // values described in the
+ // introduction:
+ template <int dim>
+ class BoundaryValues : public Function<dim>
+ {
+ public:
+ BoundaryValues () : Function<dim>(dim+1) {}
+
+ virtual double value (const Point<dim> &p,
+ const unsigned int component = 0) const;
+
+ virtual void vector_value (const Point<dim> &p,
+ Vector<double> &value) const;
+ };
+
+
+ template <int dim>
+ double
+ BoundaryValues<dim>::value (const Point<dim> &p,
+ const unsigned int component) const
+ {
+ Assert (component < this->n_components,
+ ExcIndexRange (component, 0, this->n_components));
+
+ if (component == 0)
+ return (p[0] < 0 ? -1 : (p[0] > 0 ? 1 : 0));
+ return 0;
+ }
+
+
+ template <int dim>
+ void
+ BoundaryValues<dim>::vector_value (const Point<dim> &p,
+ Vector<double> &values) const
+ {
+ for (unsigned int c=0; c<this->n_components; ++c)
+ values(c) = BoundaryValues<dim>::value (p, c);
+ }
+
+
+
+ // We implement similar functions for
+ // the right hand side which for the
+ // current example is simply zero:
+ template <int dim>
+ class RightHandSide : public Function<dim>
+ {
+ public:
+ RightHandSide () : Function<dim>(dim+1) {}
+
+ virtual double value (const Point<dim> &p,
+ const unsigned int component = 0) const;
+
+ virtual void vector_value (const Point<dim> &p,
+ Vector<double> &value) const;
+
+ };
+
+
+ template <int dim>
+ double
+ RightHandSide<dim>::value (const Point<dim> &/*p*/,
+ const unsigned int /*component*/) const
+ {
+ return 0;
+ }
+
+
+ template <int dim>
+ void
+ RightHandSide<dim>::vector_value (const Point<dim> &p,
+ Vector<double> &values) const
+ {
+ for (unsigned int c=0; c<this->n_components; ++c)
+ values(c) = RightHandSide<dim>::value (p, c);
+ }
+
+
+ // @sect3{Linear solvers and preconditioners}
+
+ // The linear solvers and preconditioners are
+ // discussed extensively in the
+ // introduction. Here, we create the
+ // respective objects that will be used.
+
+ // @sect4{The <code>InverseMatrix</code> class template}
+
+ // The <code>InverseMatrix</code>
+ // class represents the data
+ // structure for an inverse
+ // matrix. It is derived from the one
+ // in step-20. The only difference is
+ // that we now do include a
+ // preconditioner to the matrix since
+ // we will apply this class to
+ // different kinds of matrices that
+ // will require different
+ // preconditioners (in step-20 we did
+ // not use a preconditioner in this
+ // class at all). The types of matrix
+ // and preconditioner are passed to
+ // this class via template
+ // parameters, and matrix and
+ // preconditioner objects of these
+ // types will then be passed to the
+ // constructor when an
+ // <code>InverseMatrix</code> object
+ // is created. The member function
+ // <code>vmult</code> is, as in
+ // step-20, a multiplication with a
+ // vector, obtained by solving a
+ // linear system:
+ template <class Matrix, class Preconditioner>
+ class InverseMatrix : public Subscriptor
+ {
+ public:
+ InverseMatrix (const Matrix &m,
+ const Preconditioner &preconditioner);
+
+ void vmult (Vector<double> &dst,
+ const Vector<double> &src) const;
+
+ private:
+ const SmartPointer<const Matrix> matrix;
+ const SmartPointer<const Preconditioner> preconditioner;
+ };
+
+
+ template <class Matrix, class Preconditioner>
+ InverseMatrix<Matrix,Preconditioner>::InverseMatrix (const Matrix &m,
+ const Preconditioner &preconditioner)
+ :
+ matrix (&m),
+ preconditioner (&preconditioner)
+ {}
+
+
+ // This is the implementation of the
+ // <code>vmult</code> function.
+
+ // In this class we use a rather large
+ // tolerance for the solver control. The
+ // reason for this is that the function is
+ // used very frequently, and hence, any
+ // additional effort to make the residual
+ // in the CG solve smaller makes the
+ // solution more expensive. Note that we do
+ // not only use this class as a
+ // preconditioner for the Schur complement,
+ // but also when forming the inverse of the
+ // Laplace matrix – which is hence
+ // directly responsible for the accuracy of
+ // the solution itself, so we can't choose
+ // a too large tolerance, either.
+ template <class Matrix, class Preconditioner>
+ void InverseMatrix<Matrix,Preconditioner>::vmult (Vector<double> &dst,
+ const Vector<double> &src) const
+ {
+ SolverControl solver_control (src.size(), 1e-6*src.l2_norm());
+ SolverCG<> cg (solver_control);
+
+ dst = 0;
+
+ cg.solve (*matrix, dst, src, *preconditioner);
+ }
+
+
+ // @sect4{The <code>SchurComplement</code> class template}
+
+ // This class implements the Schur complement
+ // discussed in the introduction. It is in
+ // analogy to step-20. Though, we now call
+ // it with a template parameter
+ // <code>Preconditioner</code> in order to
+ // access that when specifying the respective
+ // type of the inverse matrix class. As a
+ // consequence of the definition above, the
+ // declaration <code>InverseMatrix</code> now
+ // contains the second template parameter
+ // for a preconditioner class as above, which
+ // affects the <code>SmartPointer</code>
+ // object <code>m_inverse</code> as well.
+ template <class Preconditioner>
+ class SchurComplement : public Subscriptor
+ {
+ public:
+ SchurComplement (const BlockSparseMatrix<double> &system_matrix,
+ const InverseMatrix<SparseMatrix<double>, Preconditioner> &A_inverse);
+
+ void vmult (Vector<double> &dst,
+ const Vector<double> &src) const;
+
+ private:
+ const SmartPointer<const BlockSparseMatrix<double> > system_matrix;
+ const SmartPointer<const InverseMatrix<SparseMatrix<double>, Preconditioner> > A_inverse;
+
+ mutable Vector<double> tmp1, tmp2;
+ };
+
+
+
+ template <class Preconditioner>
+ SchurComplement<Preconditioner>::
+ SchurComplement (const BlockSparseMatrix<double> &system_matrix,
+ const InverseMatrix<SparseMatrix<double>,Preconditioner> &A_inverse)
+ :
+ system_matrix (&system_matrix),
+ A_inverse (&A_inverse),
+ tmp1 (system_matrix.block(0,0).m()),
+ tmp2 (system_matrix.block(0,0).m())
+ {}
+
+
+ template <class Preconditioner>
+ void SchurComplement<Preconditioner>::vmult (Vector<double> &dst,
+ const Vector<double> &src) const
+ {
+ system_matrix->block(0,1).vmult (tmp1, src);
+ A_inverse->vmult (tmp2, tmp1);
+ system_matrix->block(1,0).vmult (dst, tmp2);
+ }
+
+
+ // @sect3{StokesProblem class implementation}
+
+ // @sect4{StokesProblem::StokesProblem}
+
+ // The constructor of this class
+ // looks very similar to the one of
+ // step-20. The constructor
+ // initializes the variables for the
+ // polynomial degree, triangulation,
+ // finite element system and the dof
+ // handler. The underlying polynomial
+ // functions are of order
+ // <code>degree+1</code> for the
+ // vector-valued velocity components
+ // and of order <code>degree</code>
+ // for the pressure. This gives the
+ // LBB-stable element pair
+ // $Q_{degree+1}^d\times Q_{degree}$,
+ // often referred to as the
+ // Taylor-Hood element.
+ //
+ // Note that we initialize the triangulation
+ // with a MeshSmoothing argument, which
+ // ensures that the refinement of cells is
+ // done in a way that the approximation of
+ // the PDE solution remains well-behaved
+ // (problems arise if grids are too
+ // unstructered), see the documentation of
+ // <code>Triangulation::MeshSmoothing</code>
+ // for details.
+ template <int dim>
+ StokesProblem<dim>::StokesProblem (const unsigned int degree)
+ :
+ degree (degree),
+ triangulation (Triangulation<dim>::maximum_smoothing),
+ fe (FE_Q<dim>(degree+1), dim,
+ FE_Q<dim>(degree), 1),
+ dof_handler (triangulation)
+ {}
+
+
+ // @sect4{StokesProblem::setup_dofs}
+
+ // Given a mesh, this function
+ // associates the degrees of freedom
+ // with it and creates the
+ // corresponding matrices and
+ // vectors. At the beginning it also
+ // releases the pointer to the
+ // preconditioner object (if the
+ // shared pointer pointed at anything
+ // at all at this point) since it
+ // will definitely not be needed any
+ // more after this point and will
+ // have to be re-computed after
+ // assembling the matrix, and unties
+ // the sparse matrix from its
+ // sparsity pattern object.
+ //
+ // We then proceed with distributing
+ // degrees of freedom and renumbering
+ // them: In order to make the ILU
+ // preconditioner (in 3D) work
+ // efficiently, it is important to
+ // enumerate the degrees of freedom
+ // in such a way that it reduces the
+ // bandwidth of the matrix, or maybe
+ // more importantly: in such a way
+ // that the ILU is as close as
+ // possible to a real LU
+ // decomposition. On the other hand,
+ // we need to preserve the block
+ // structure of velocity and pressure
+ // already seen in in step-20 and
+ // step-21. This is done in two
+ // steps: First, all dofs are
+ // renumbered to improve the ILU and
+ // then we renumber once again by
+ // components. Since
+ // <code>DoFRenumbering::component_wise</code>
+ // does not touch the renumbering
+ // within the individual blocks, the
+ // basic renumbering from the first
+ // step remains. As for how the
+ // renumber degrees of freedom to
+ // improve the ILU: deal.II has a
+ // number of algorithms that attempt
+ // to find orderings to improve ILUs,
+ // or reduce the bandwidth of
+ // matrices, or optimize some other
+ // aspect. The DoFRenumbering
+ // namespace shows a comparison of
+ // the results we obtain with several
+ // of these algorithms based on the
+ // testcase discussed here in this
+ // tutorial program. Here, we will
+ // use the traditional Cuthill-McKee
+ // algorithm already used in some of
+ // the previous tutorial programs.
+ // In the
+ // <a href="#improved-ilu">section on improved ILU</a>
+ // we're going to discuss this issue
+ // in more detail.
+
+ // There is one more change compared
+ // to previous tutorial programs:
+ // There is no reason in sorting the
+ // <code>dim</code> velocity
+ // components individually. In fact,
+ // rather than first enumerating all
+ // $x$-velocities, then all
+ // $y$-velocities, etc, we would like
+ // to keep all velocities at the same
+ // location together and only
+ // separate between velocities (all
+ // components) and pressures. By
+ // default, this is not what the
+ // DoFRenumbering::component_wise
+ // function does: it treats each
+ // vector component separately; what
+ // we have to do is group several
+ // components into "blocks" and pass
+ // this block structure to that
+ // function. Consequently, we
+ // allocate a vector
+ // <code>block_component</code> with
+ // as many elements as there are
+ // components and describe all
+ // velocity components to correspond
+ // to block 0, while the pressure
+ // component will form block 1:
+ template <int dim>
+ void StokesProblem<dim>::setup_dofs ()
+ {
+ A_preconditioner.reset ();
+ system_matrix.clear ();
+
+ dof_handler.distribute_dofs (fe);
+ DoFRenumbering::Cuthill_McKee (dof_handler);
+
+ std::vector<unsigned int> block_component (dim+1,0);
+ block_component[dim] = 1;
+ DoFRenumbering::component_wise (dof_handler, block_component);
+
+ // Now comes the implementation of
+ // Dirichlet boundary conditions, which
+ // should be evident after the discussion
+ // in the introduction. All that changed is
+ // that the function already appears in the
+ // setup functions, whereas we were used to
+ // see it in some assembly routine. Further
+ // down below where we set up the mesh, we
+ // will associate the top boundary where we
+ // impose Dirichlet boundary conditions
+ // with boundary indicator 1. We will have
+ // to pass this boundary indicator as
+ // second argument to the function below
+ // interpolating boundary values. There is
+ // one more thing, though. The function
+ // describing the Dirichlet conditions was
+ // defined for all components, both
+ // velocity and pressure. However, the
+ // Dirichlet conditions are to be set for
+ // the velocity only. To this end, we use
+ // a <code>component_mask</code> that
+ // filters out the pressure component, so
+ // that the condensation is performed on
+ // velocity degrees of freedom only. Since
+ // we use adaptively refined grids the
+ // constraint matrix needs to be first
+ // filled with hanging node constraints
+ // generated from the DoF handler. Note the
+ // order of the two functions — we
+ // first compute the hanging node
+ // constraints, and then insert the
+ // boundary values into the constraint
+ // matrix. This makes sure that we respect
+ // H<sup>1</sup> conformity on boundaries
+ // with hanging nodes (in three space
+ // dimensions), where the hanging node
+ // needs to dominate the Dirichlet boundary
+ // values.
+ {
+ constraints.clear ();
+ std::vector<bool> component_mask (dim+1, true);
+ component_mask[dim] = false;
+ DoFTools::make_hanging_node_constraints (dof_handler,
+ constraints);
+ VectorTools::interpolate_boundary_values (dof_handler,
+ 1,
+ BoundaryValues<dim>(),
+ constraints,
+ component_mask);
+ }
+
+ constraints.close ();
+
+ // In analogy to step-20, we count the dofs
+ // in the individual components. We could
+ // do this in the same way as there, but we
+ // want to operate on the block structure
+ // we used already for the renumbering: The
+ // function
+ // <code>DoFTools::count_dofs_per_block</code>
+ // does the same as
+ // <code>DoFTools::count_dofs_per_component</code>,
+ // but now grouped as velocity and pressure
+ // block via <code>block_component</code>.
+ std::vector<unsigned int> dofs_per_block (2);
+ DoFTools::count_dofs_per_block (dof_handler, dofs_per_block, block_component);
+ const unsigned int n_u = dofs_per_block[0],
+ n_p = dofs_per_block[1];
+
+ std::cout << " Number of active cells: "
+ << triangulation.n_active_cells()
+ << std::endl
+ << " Number of degrees of freedom: "
+ << dof_handler.n_dofs()
+ << " (" << n_u << '+' << n_p << ')'
+ << std::endl;
+
+ // The next task is to allocate a
+ // sparsity pattern for the system matrix
+ // we will create. We could do this in
+ // the same way as in step-20,
+ // i.e. directly build an object of type
+ // SparsityPattern through
+ // DoFTools::make_sparsity_pattern. However,
+ // there is a major reason not to do so:
+ // In 3D, the function
+ // DoFTools::max_couplings_between_dofs
+ // yields a conservative but rather large
+ // number for the coupling between the
+ // individual dofs, so that the memory
+ // initially provided for the creation of
+ // the sparsity pattern of the matrix is
+ // far too much -- so much actually that
+ // the initial sparsity pattern won't
+ // even fit into the physical memory of
+ // most systems already for
+ // moderately-sized 3D problems, see also
+ // the discussion in step-18. Instead,
+ // we first build a temporary object that
+ // uses a different data structure that
+ // doesn't require allocating more memory
+ // than necessary but isn't suitable for
+ // use as a basis of SparseMatrix or
+ // BlockSparseMatrix objects; in a second
+ // step we then copy this object into an
+ // object of BlockSparsityPattern. This
+ // is entirely analgous to what we
+ // already did in step-11 and step-18.
+ //
+ // There is one snag again here, though:
+ // it turns out that using the
+ // CompressedSparsityPattern (or the
+ // block version
+ // BlockCompressedSparsityPattern we
+ // would use here) has a bottleneck that
+ // makes the algorithm to build the
+ // sparsity pattern be quadratic in the
+ // number of degrees of freedom. This
+ // doesn't become noticeable until we get
+ // well into the range of several 100,000
+ // degrees of freedom, but eventually
+ // dominates the setup of the linear
+ // system when we get to more than a
+ // million degrees of freedom. This is
+ // due to the data structures used in the
+ // CompressedSparsityPattern class,
+ // nothing that can easily be
+ // changed. Fortunately, there is an easy
+ // solution: the
+ // CompressedSimpleSparsityPattern class
+ // (and its block variant
+ // BlockCompressedSimpleSparsityPattern)
+ // has exactly the same interface, uses a
+ // different %internal data structure and
+ // is linear in the number of degrees of
+ // freedom and therefore much more
+ // efficient for large problems. As
+ // another alternative, we could also
+ // have chosen the class
+ // BlockCompressedSetSparsityPattern that
+ // uses yet another strategy for %internal
+ // memory management. Though, that class
+ // turns out to be more memory-demanding
+ // than
+ // BlockCompressedSimpleSparsityPattern
+ // for this example.
+ //
+ // Consequently, this is the class that
+ // we will use for our intermediate
+ // sparsity representation. All this is
+ // done inside a new scope, which means
+ // that the memory of <code>csp</code>
+ // will be released once the information
+ // has been copied to
+ // <code>sparsity_pattern</code>.
+ {
+ BlockCompressedSimpleSparsityPattern csp (2,2);
+
+ csp.block(0,0).reinit (n_u, n_u);
+ csp.block(1,0).reinit (n_p, n_u);
+ csp.block(0,1).reinit (n_u, n_p);
+ csp.block(1,1).reinit (n_p, n_p);
+
+ csp.collect_sizes();
+
+ DoFTools::make_sparsity_pattern (dof_handler, csp, constraints, false);
+ sparsity_pattern.copy_from (csp);
+ }
+
+ // Finally, the system matrix,
+ // solution and right hand side are
+ // created from the block
+ // structure as in step-20:
+ system_matrix.reinit (sparsity_pattern);
+
+ solution.reinit (2);
+ solution.block(0).reinit (n_u);
+ solution.block(1).reinit (n_p);
+ solution.collect_sizes ();
+
+ system_rhs.reinit (2);
+ system_rhs.block(0).reinit (n_u);
+ system_rhs.block(1).reinit (n_p);
+ system_rhs.collect_sizes ();
+ }
+
+
+ // @sect4{StokesProblem::assemble_system}
+
+ // The assembly process follows the
+ // discussion in step-20 and in the
+ // introduction. We use the well-known
+ // abbreviations for the data structures
+ // that hold the local matrix, right
+ // hand side, and global
+ // numbering of the degrees of freedom
+ // for the present cell.
+ template <int dim>
+ void StokesProblem<dim>::assemble_system ()
+ {
+ system_matrix=0;
+ system_rhs=0;
+
+ QGauss<dim> quadrature_formula(degree+2);
+
+ FEValues<dim> fe_values (fe, quadrature_formula,
+ update_values |
+ update_quadrature_points |
+ update_JxW_values |
+ update_gradients);
+
+ const unsigned int dofs_per_cell = fe.dofs_per_cell;
+
+ const unsigned int n_q_points = quadrature_formula.size();
+
+ FullMatrix<double> local_matrix (dofs_per_cell, dofs_per_cell);
+ Vector<double> local_rhs (dofs_per_cell);
+
+ std::vector<unsigned int> local_dof_indices (dofs_per_cell);
+
+ const RightHandSide<dim> right_hand_side;
+ std::vector<Vector<double> > rhs_values (n_q_points,
+ Vector<double>(dim+1));
+
+ // Next, we need two objects that work as
+ // extractors for the FEValues
+ // object. Their use is explained in detail
+ // in the report on @ref vector_valued :
+ const FEValuesExtractors::Vector velocities (0);
+ const FEValuesExtractors::Scalar pressure (dim);
+
+ // As an extension over step-20 and
+ // step-21, we include a few
+ // optimizations that make assembly
+ // much faster for this particular
+ // problem. The improvements are
+ // based on the observation that we
+ // do a few calculations too many
+ // times when we do as in step-20:
+ // The symmetric gradient actually
+ // has <code>dofs_per_cell</code>
+ // different values per quadrature
+ // point, but we extract it
+ // <code>dofs_per_cell*dofs_per_cell</code>
+ // times from the FEValues object -
+ // for both the loop over
+ // <code>i</code> and the inner
+ // loop over <code>j</code>. In 3d,
+ // that means evaluating it
+ // $89^2=7921$ instead of $89$
+ // times, a not insignificant
+ // difference.
+ //
+ // So what we're
+ // going to do here is to avoid
+ // such repeated calculations by
+ // getting a vector of rank-2
+ // tensors (and similarly for
+ // the divergence and the basis
+ // function value on pressure)
+ // at the quadrature point prior
+ // to starting the loop over the
+ // dofs on the cell. First, we
+ // create the respective objects
+ // that will hold these
+ // values. Then, we start the
+ // loop over all cells and the loop
+ // over the quadrature points,
+ // where we first extract these
+ // values. There is one more
+ // optimization we implement here:
+ // the local matrix (as well as
+ // the global one) is going to
+ // be symmetric, since all
+ // the operations involved are
+ // symmetric with respect to $i$
+ // and $j$. This is implemented by
+ // simply running the inner loop
+ // not to <code>dofs_per_cell</code>,
+ // but only up to <code>i</code>,
+ // the index of the outer loop.
+ std::vector<SymmetricTensor<2,dim> > symgrad_phi_u (dofs_per_cell);
+ std::vector<double> div_phi_u (dofs_per_cell);
+ std::vector<double> phi_p (dofs_per_cell);
+
+ typename DoFHandler<dim>::active_cell_iterator
+ cell = dof_handler.begin_active(),
+ endc = dof_handler.end();
+ for (; cell!=endc; ++cell)
+ {
+ fe_values.reinit (cell);
+ local_matrix = 0;
+ local_rhs = 0;
+
+ right_hand_side.vector_value_list(fe_values.get_quadrature_points(),
+ rhs_values);
+
+ for (unsigned int q=0; q<n_q_points; ++q)
+ {
+ for (unsigned int k=0; k<dofs_per_cell; ++k)
+ {
+ symgrad_phi_u[k] = fe_values[velocities].symmetric_gradient (k, q);
+ div_phi_u[k] = fe_values[velocities].divergence (k, q);
+ phi_p[k] = fe_values[pressure].value (k, q);
+ }
+
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ {
+ for (unsigned int j=0; j<=i; ++j)
+ {
+ local_matrix(i,j) += (symgrad_phi_u[i] * symgrad_phi_u[j]
+ - div_phi_u[i] * phi_p[j]
+ - phi_p[i] * div_phi_u[j]
+ + phi_p[i] * phi_p[j])
+ * fe_values.JxW(q);
+
+ }
+
+ const unsigned int component_i =
+ fe.system_to_component_index(i).first;
+ local_rhs(i) += fe_values.shape_value(i,q) *
+ rhs_values[q](component_i) *
+ fe_values.JxW(q);
+ }
+ }
+
+ // Note that in the above computation
+ // of the local matrix contribution
+ // we added the term <code> phi_p[i] *
+ // phi_p[j] </code>, yielding a
+ // pressure mass matrix in the
+ // $(1,1)$ block of the matrix as
+ // discussed in the
+ // introduction. That this term only
+ // ends up in the $(1,1)$ block stems
+ // from the fact that both of the
+ // factors in <code>phi_p[i] *
+ // phi_p[j]</code> are only non-zero
+ // when all the other terms vanish
+ // (and the other way around).
+ //
+ // Note also that operator* is
+ // overloaded for symmetric
+ // tensors, yielding the scalar
+ // product between the two
+ // tensors in the first line of
+ // the local matrix
+ // contribution.
+
+ // Before we can write the local data
+ // into the global matrix (and
+ // simultaneously use the
+ // ConstraintMatrix object to apply
+ // Dirichlet boundary conditions and
+ // eliminate hanging node
+ // constraints, as we discussed in
+ // the introduction), we have to be
+ // careful about one thing,
+ // though. We have only build up half
+ // of the local matrix because of
+ // symmetry, but we're going to save
+ // the full system matrix in order to
+ // use the standard functions for
+ // solution. This is done by flipping
+ // the indices in case we are
+ // pointing into the empty part of
+ // the local matrix.
+ for (unsigned int i=0; i<dofs_per_cell; ++i)
+ for (unsigned int j=i+1; j<dofs_per_cell; ++j)
+ local_matrix(i,j) = local_matrix(j,i);
+
+ cell->get_dof_indices (local_dof_indices);
+ constraints.distribute_local_to_global (local_matrix, local_rhs,
+ local_dof_indices,
+ system_matrix, system_rhs);
+ }
+
+ // Before we're going to solve this
+ // linear system, we generate a
+ // preconditioner for the
+ // velocity-velocity matrix, i.e.,
+ // <code>block(0,0)</code> in the
+ // system matrix. As mentioned
+ // above, this depends on the
+ // spatial dimension. Since the two
+ // classes described by the
+ // <code>InnerPreconditioner::type</code>
+ // typedef have the same interface,
+ // we do not have to do anything
+ // different whether we want to use
+ // a sparse direct solver or an
+ // ILU:
+ std::cout << " Computing preconditioner..." << std::endl << std::flush;
+
+ A_preconditioner
+ = std_cxx1x::shared_ptr<typename InnerPreconditioner<dim>::type>(new typename InnerPreconditioner<dim>::type());
+ A_preconditioner->initialize (system_matrix.block(0,0),
+ typename InnerPreconditioner<dim>::type::AdditionalData());
+
+ }
+
+
+
+ // @sect4{StokesProblem::solve}
+
+ // After the discussion in the introduction
+ // and the definition of the respective
+ // classes above, the implementation of the
+ // <code>solve</code> function is rather
+ // straigt-forward and done in a similar way
+ // as in step-20. To start with, we need an
+ // object of the <code>InverseMatrix</code>
+ // class that represents the inverse of the
+ // matrix A. As described in the
+ // introduction, the inverse is generated
+ // with the help of an inner preconditioner
+ // of type
+ // <code>InnerPreconditioner::type</code>.
+ template <int dim>
+ void StokesProblem<dim>::solve ()
+ {
+ const InverseMatrix<SparseMatrix<double>,
+ typename InnerPreconditioner<dim>::type>
+ A_inverse (system_matrix.block(0,0), *A_preconditioner);
+ Vector<double> tmp (solution.block(0).size());
+
+ // This is as in step-20. We generate the
+ // right hand side $B A^{-1} F - G$ for the
+ // Schur complement and an object that
+ // represents the respective linear
+ // operation $B A^{-1} B^T$, now with a
+ // template parameter indicating the
+ // preconditioner - in accordance with the
+ // definition of the class.
+ {
+ Vector<double> schur_rhs (solution.block(1).size());
+ A_inverse.vmult (tmp, system_rhs.block(0));
+ system_matrix.block(1,0).vmult (schur_rhs, tmp);
+ schur_rhs -= system_rhs.block(1);
+
+ SchurComplement<typename InnerPreconditioner<dim>::type>
+ schur_complement (system_matrix, A_inverse);
+
+ // The usual control structures for
+ // the solver call are created...
+ SolverControl solver_control (solution.block(1).size(),
+ 1e-6*schur_rhs.l2_norm());
+ SolverCG<> cg (solver_control);
+
+ // Now to the preconditioner to the
+ // Schur complement. As explained in
+ // the introduction, the
+ // preconditioning is done by a mass
+ // matrix in the pressure variable. It
+ // is stored in the $(1,1)$ block of
+ // the system matrix (that is not used
+ // anywhere else but in
+ // preconditioning).
+ //
+ // Actually, the solver needs to have
+ // the preconditioner in the form
+ // $P^{-1}$, so we need to create an
+ // inverse operation. Once again, we
+ // use an object of the class
+ // <code>InverseMatrix</code>, which
+ // implements the <code>vmult</code>
+ // operation that is needed by the
+ // solver. In this case, we have to
+ // invert the pressure mass matrix. As
+ // it already turned out in earlier
+ // tutorial programs, the inversion of
+ // a mass matrix is a rather cheap and
+ // straight-forward operation (compared
+ // to, e.g., a Laplace matrix). The CG
+ // method with ILU preconditioning
+ // converges in 5-10 steps,
+ // independently on the mesh size.
+ // This is precisely what we do here:
+ // We choose another ILU preconditioner
+ // and take it along to the
+ // InverseMatrix object via the
+ // corresponding template parameter. A
+ // CG solver is then called within the
+ // vmult operation of the inverse
+ // matrix.
+ //
+ // An alternative that is cheaper to
+ // build, but needs more iterations
+ // afterwards, would be to choose a
+ // SSOR preconditioner with factor
+ // 1.2. It needs about twice the number
+ // of iterations, but the costs for its
+ // generation are almost neglible.
+ SparseILU<double> preconditioner;
+ preconditioner.initialize (system_matrix.block(1,1),
+ SparseILU<double>::AdditionalData());
+
+ InverseMatrix<SparseMatrix<double>,SparseILU<double> >
+ m_inverse (system_matrix.block(1,1), preconditioner);
+
+ // With the Schur complement and an
+ // efficient preconditioner at hand, we
+ // can solve the respective equation
+ // for the pressure (i.e. block 0 in
+ // the solution vector) in the usual
+ // way:
+ cg.solve (schur_complement, solution.block(1), schur_rhs,
+ m_inverse);
+
+ // After this first solution step, the
+ // hanging node constraints have to be
+ // distributed to the solution in order
+ // to achieve a consistent pressure
+ // field.
+ constraints.distribute (solution);
+
+ std::cout << " "
+ << solver_control.last_step()
+ << " outer CG Schur complement iterations for pressure"
+ << std::endl;
+ }
+
+ // As in step-20, we finally need to
+ // solve for the velocity equation where
+ // we plug in the solution to the
+ // pressure equation. This involves only
+ // objects we already know - so we simply
+ // multiply $p$ by $B^T$, subtract the
+ // right hand side and multiply by the
+ // inverse of $A$. At the end, we need to
+ // distribute the constraints from
+ // hanging nodes in order to obtain a
+ // constistent flow field:
+ {
+ system_matrix.block(0,1).vmult (tmp, solution.block(1));
+ tmp *= -1;
+ tmp += system_rhs.block(0);
+
+ A_inverse.vmult (solution.block(0), tmp);
+
+ constraints.distribute (solution);
+ }
+ }
+
+
+ // @sect4{StokesProblem::output_results}
+
+ // The next function generates graphical
+ // output. In this example, we are going to
+ // use the VTK file format. We attach
+ // names to the individual variables in the
+ // problem: <code>velocity</code> to the
+ // <code>dim</code> components of velocity
+ // and <code>pressure</code> to the
+ // pressure.
+ //
+ // Not all visualization programs have the
+ // ability to group individual vector
+ // components into a vector to provide
+ // vector plots; in particular, this holds
+ // for some VTK-based visualization
+ // programs. In this case, the logical
+ // grouping of components into vectors
+ // should already be described in the file
+ // containing the data. In other words,
+ // what we need to do is provide our output
+ // writers with a way to know which of the
+ // components of the finite element
+ // logically form a vector (with $d$
+ // components in $d$ space dimensions)
+ // rather than letting them assume that we
+ // simply have a bunch of scalar fields.
+ // This is achieved using the members of
+ // the
+ // <code>DataComponentInterpretation</code>
+ // namespace: as with the filename, we
+ // create a vector in which the first
+ // <code>dim</code> components refer to the
+ // velocities and are given the tag
+ // <code>DataComponentInterpretation::component_is_part_of_vector</code>;
+ // we finally push one tag
+ // <code>DataComponentInterpretation::component_is_scalar</code>
+ // to describe the grouping of the pressure
+ // variable.
+
+ // The rest of the function is then
+ // the same as in step-20.
+ template <int dim>
+ void
+ StokesProblem<dim>::output_results (const unsigned int refinement_cycle) const
+ {
+ std::vector<std::string> solution_names (dim, "velocity");
+ solution_names.push_back ("pressure");
+
+ std::vector<DataComponentInterpretation::DataComponentInterpretation>
+ data_component_interpretation
+ (dim, DataComponentInterpretation::component_is_part_of_vector);
+ data_component_interpretation
+ .push_back (DataComponentInterpretation::component_is_scalar);
+
+ DataOut<dim> data_out;
+ data_out.attach_dof_handler (dof_handler);
+ data_out.add_data_vector (solution, solution_names,
+ DataOut<dim>::type_dof_data,
+ data_component_interpretation);
+ data_out.build_patches ();
+
+ std::ostringstream filename;
+ filename << "solution-"
+ << Utilities::int_to_string (refinement_cycle, 2)
+ << ".vtk";
+
+ std::ofstream output (filename.str().c_str());
+ data_out.write_vtk (output);
+ }
+
+
+ // @sect4{StokesProblem::refine_mesh}
+
+ // This is the last interesting function of
+ // the <code>StokesProblem</code> class.
+ // As indicated by its name, it takes the
+ // solution to the problem and refines the
+ // mesh where this is needed. The procedure
+ // is the same as in the respective step in
+ // step-6, with the exception that we base
+ // the refinement only on the change in
+ // pressure, i.e., we call the Kelly error
+ // estimator with a mask
+ // object. Additionally, we do not coarsen
+ // the grid again:
+ template <int dim>
+ void
+ StokesProblem<dim>::refine_mesh ()
+ {
+ Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
+
+ std::vector<bool> component_mask (dim+1, false);
+ component_mask[dim] = true;
+ KellyErrorEstimator<dim>::estimate (dof_handler,
+ QGauss<dim-1>(degree+1),
+ typename FunctionMap<dim>::type(),
+ solution,
+ estimated_error_per_cell,
+ component_mask);
+
+ GridRefinement::refine_and_coarsen_fixed_number (triangulation,
+ estimated_error_per_cell,
+ 0.3, 0.0);
+ triangulation.execute_coarsening_and_refinement ();
+ }
+
+
+ // @sect4{StokesProblem::run}
+
+ // The last step in the Stokes class is, as
+ // usual, the function that generates the
+ // initial grid and calls the other
+ // functions in the respective order.
+ //
+ // We start off with a rectangle of size $4
+ // \times 1$ (in 2d) or $4 \times 1 \times
+ // 1$ (in 3d), placed in $R^2/R^3$ as
+ // $(-2,2)\times(-1,0)$ or
+ // $(-2,2)\times(0,1)\times(-1,0)$,
+ // respectively. It is natural to start
+ // with equal mesh size in each direction,
+ // so we subdivide the initial rectangle
+ // four times in the first coordinate
+ // direction. To limit the scope of the
+ // variables involved in the creation of
+ // the mesh to the range where we actually
+ // need them, we put the entire block
+ // between a pair of braces:
+ template <int dim>
+ void StokesProblem<dim>::run ()
+ {
+ {
+ std::vector<unsigned int> subdivisions (dim, 1);
+ subdivisions[0] = 4;
+
+ const Point<dim> bottom_left = (dim == 2 ?
+ Point<dim>(-2,-1) :
+ Point<dim>(-2,0,-1));
+ const Point<dim> top_right = (dim == 2 ?
+ Point<dim>(2,0) :
+ Point<dim>(2,1,0));
+
+ GridGenerator::subdivided_hyper_rectangle (triangulation,
+ subdivisions,
+ bottom_left,
+ top_right);
+ }
+
+ // A boundary indicator of 1 is set to all
+ // boundaries that are subject to Dirichlet
+ // boundary conditions, i.e. to faces that
+ // are located at 0 in the last coordinate
+ // direction. See the example description
+ // above for details.
+ for (typename Triangulation<dim>::active_cell_iterator
+ cell = triangulation.begin_active();
+ cell != triangulation.end(); ++cell)
+ for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
+ if (cell->face(f)->center()[dim-1] == 0)
+ cell->face(f)->set_all_boundary_indicators(1);
+
+
+ // We then apply an initial refinement
+ // before solving for the first time. In
+ // 3D, there are going to be more degrees
+ // of freedom, so we refine less there:
+ triangulation.refine_global (4-dim);
+
+ // As first seen in step-6, we cycle over
+ // the different refinement levels and
+ // refine (except for the first cycle),
+ // setup the degrees of freedom and
+ // matrices, assemble, solve and create
+ // output:
+ for (unsigned int refinement_cycle = 0; refinement_cycle<6;
+ ++refinement_cycle)
+ {
+ std::cout << "Refinement cycle " << refinement_cycle << std::endl;
+
+ if (refinement_cycle > 0)
+ refine_mesh ();
+
+ setup_dofs ();
+
+ std::cout << " Assembling..." << std::endl << std::flush;
+ assemble_system ();
+
+ std::cout << " Solving..." << std::flush;
+ solve ();
+
+ output_results (refinement_cycle);
+
+ std::cout << std::endl;
+ }
+ }
+}
+
+
+ // @sect3{The <code>main</code> function}
+
+ // The main function is the same as in
+ // step-20. We pass the element degree as a
+ // parameter and choose the space dimension
+ // at the well-known template slot.
+int main ()
+{
+ try
+ {
+ using namespace dealii;
+ using namespace Step22;
+
+ deallog.depth_console (0);
+
+ StokesProblem<2> flow_problem(1);
+ flow_problem.run ();
+ }
+ catch (std::exception &exc)
+ {
+ std::cerr << std::endl << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ std::cerr << "Exception on processing: " << std::endl
+ << exc.what() << std::endl
+ << "Aborting!" << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+
+ return 1;
+ }
+ catch (...)
+ {
+ std::cerr << std::endl << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ std::cerr << "Unknown exception!" << std::endl
+ << "Aborting!" << std::endl
+ << "----------------------------------------------------"
+ << std::endl;
+ return 1;
+ }
+
+ return 0;
+}