]> https://gitweb.dealii.org/ - dealii.git/commitdiff
restructure member function list
authorGuido Kanschat <dr.guido.kanschat@gmail.com>
Sun, 25 Sep 2011 20:23:04 +0000 (20:23 +0000)
committerGuido Kanschat <dr.guido.kanschat@gmail.com>
Sun, 25 Sep 2011 20:23:04 +0000 (20:23 +0000)
git-svn-id: https://svn.dealii.org/trunk@24411 0785d39b-7218-0410-832d-ea1e28bc413d

deal.II/include/deal.II/lac/sparsity_pattern.h

index b5defef65103e6f548d812faefcf63d18f3d2493..16b404d94994d56ffce889bd5df9d291d1c009f5 100644 (file)
@@ -189,11 +189,6 @@ namespace SparsityPatternIterators
                                        * sparsity pattern.
                                        */
       bool operator < (const Accessor &) const;
-
-                                      /** @addtogroup Exceptions
-                                       * @{ */
-
-                                      //@}
     protected:
                                       /**
                                        * The sparsity pattern we operate on
@@ -370,6 +365,11 @@ class SparsityPattern : public Subscriptor
                                      */
     static const unsigned int invalid_entry = numbers::invalid_unsigned_int;
 
+/**
+ * @name Functions generating and
+ * filling a SparsityPattern.
+ */
+// @{
                                     /**
                                      * Initialize the matrix empty,
                                      * that is with no memory
@@ -552,11 +552,6 @@ class SparsityPattern : public Subscriptor
                                      * objects.
                                      */
     SparsityPattern & operator = (const SparsityPattern &);
-    
-                     /**
-                         *  Test for equality of two SparsityPatterns.
-                         */
-    bool operator == (const SparsityPattern &)  const;
 
                                     /**
                                      * Reallocate memory and set up data
@@ -635,73 +630,6 @@ class SparsityPattern : public Subscriptor
                                      */
     void compress ();
 
-                                    /**
-                                     * STL-like iterator with the first entry
-                                     * of the matrix. The resulting iterator
-                                     * can be used to walk over all nonzero
-                                     * entries of the sparsity pattern.
-                                     */
-    inline iterator begin () const;
-
-                                    /**
-                                     * Final iterator.
-                                     */
-    inline iterator end () const;
-
-                                    /**
-                                     * STL-like iterator with the first entry
-                                     * of row <tt>r</tt>.
-                                     *
-                                     * Note that if the given row is empty,
-                                     * i.e. does not contain any nonzero
-                                     * entries, then the iterator returned by
-                                     * this function equals
-                                     * <tt>end(r)</tt>. Note also that the
-                                     * iterator may not be dereferencable in
-                                     * that case.
-                                     */
-    inline iterator begin (const unsigned int r) const;
-
-                                    /**
-                                     * Final iterator of row <tt>r</tt>. It
-                                     * points to the first element past the
-                                     * end of line @p r, or past the end of
-                                     * the entire sparsity pattern.
-                                     *
-                                     * Note that the end iterator is not
-                                     * necessarily dereferencable. This is in
-                                     * particular the case if it is the end
-                                     * iterator for the last row of a matrix.
-                                     */
-    inline iterator end (const unsigned int r) const;
-
-                                    /**
-                                     * STL-like iterator with the first entry
-                                     * of row <tt>r</tt>.
-                                     *
-                                     * Note that if the given row is empty,
-                                     * i.e. does not contain any nonzero
-                                     * entries, then the iterator returned by
-                                     * this function equals
-                                     * <tt>end(r)</tt>. Note also that the
-                                     * iterator may not be dereferencable in
-                                     * that case.
-                                     */
-    inline row_iterator row_begin (const unsigned int r) const;
-
-                                    /**
-                                     * Final iterator of row <tt>r</tt>. It
-                                     * points to the first element past the
-                                     * end of line @p r, or past the end of
-                                     * the entire sparsity pattern.
-                                     *
-                                     * Note that the end iterator is not
-                                     * necessarily dereferencable. This is in
-                                     * particular the case if it is the end
-                                     * iterator for the last row of a matrix.
-                                     */
-    inline row_iterator row_end (const unsigned int r) const;
-
                                     /**
                                      * This function can be used as a
                                      * replacement for reinit(),
@@ -876,78 +804,19 @@ class SparsityPattern : public Subscriptor
                    const bool optimize_diagonal = true);
 
                                     /**
-                                     * Return whether the object is empty. It
-                                     * is empty if no memory is allocated,
-                                     * which is the same as that both
-                                     * dimensions are zero.
-                                     */
-    bool empty () const;
-
-                                    /**
-                                     * Return the maximum number of entries per
-                                     * row. Before compression, this equals the
-                                     * number given to the constructor, while
-                                     * after compression, it equals the maximum
-                                     * number of entries actually allocated by
-                                     * the user.
-                                     */
-    unsigned int max_entries_per_row () const;
-
-                                    /**
-                                     * Return the index of the matrix
-                                     * element with row number <tt>i</tt>
-                                     * and column number <tt>j</tt>. If
-                                     * the matrix element is not a
-                                     * nonzero one, return
-                                     * SparsityPattern::invalid_entry.
-                                     *
-                                     * This function is usually
-                                     * called by the
-                                     * SparseMatrix::operator()(). It
-                                     * may only be called for
-                                     * compressed sparsity patterns,
-                                     * since in this case searching
-                                     * whether the entry exists can
-                                     * be done quite fast with a
-                                     * binary sort algorithm because
-                                     * the column numbers are sorted.
-                                     *
-                                     * If <tt>m</tt> is the number of
-                                     * entries in <tt>row</tt>, then the
-                                     * complexity of this function is
-                                     * <i>log(m)</i> if the sparsity
-                                     * pattern is compressed.
-                                     *
-                                     * @deprecated Use
-                                     * SparseMatrix::const_iterator
-                                     */
-    unsigned int operator() (const unsigned int i,
-                            const unsigned int j) const;
-
-                                    /**
-                                     * This is the inverse operation
-                                     * to operator()(): given a
-                                     * global index, find out row and
-                                     * column of the matrix entry to
-                                     * which it belongs. The returned
-                                     * value is the pair composed of
-                                     * row and column index.
-                                     *
-                                     * This function may only be
-                                     * called if the sparsity pattern
-                                     * is closed. The global index
-                                     * must then be between zero and
-                                     * n_nonzero_elements().
+                                     * Make the sparsity pattern
+                                     * symmetric by adding the
+                                     * sparsity pattern of the
+                                     * transpose object.
                                      *
-                                     * If <tt>N</tt> is the number of
-                                     * rows of this matrix, then the
-                                     * complexity of this function is
-                                     * <i>log(N)</i>.
+                                     * This function throws an
+                                     * exception if the sparsity
+                                     * pattern does not represent a
+                                     * quadratic matrix.
                                      */
-    std::pair<unsigned int, unsigned int>
-    matrix_position (const unsigned int global_index) const;
+    void symmetrize ();
 
-                                    /**
+/**
                                      * Add a nonzero entry to the matrix.
                                      * This function may only be called
                                      * for non-compressed sparsity patterns.
@@ -973,75 +842,115 @@ class SparsityPattern : public Subscriptor
                      ForwardIterator    end,
                      const bool         indices_are_sorted = false);
 
+// @}
+/**
+ * @name Iterators
+ */
+// @{
+                                     
                                     /**
-                                     * Make the sparsity pattern
-                                     * symmetric by adding the
-                                     * sparsity pattern of the
-                                     * transpose object.
-                                     *
-                                     * This function throws an
-                                     * exception if the sparsity
-                                     * pattern does not represent a
-                                     * quadratic matrix.
+                                     * STL-like iterator with the first entry
+                                     * of the matrix. The resulting iterator
+                                     * can be used to walk over all nonzero
+                                     * entries of the sparsity pattern.
                                      */
-    void symmetrize ();
+    inline iterator begin () const;
 
                                     /**
-                                     * Return number of rows of this
-                                     * matrix, which equals the dimension
-                                     * of the image space.
+                                     * Final iterator.
                                      */
-    inline unsigned int n_rows () const;
+    inline iterator end () const;
 
                                     /**
-                                     * Return number of columns of this
-                                     * matrix, which equals the dimension
-                                     * of the range space.
+                                     * STL-like iterator with the first entry
+                                     * of row <tt>r</tt>.
+                                     *
+                                     * Note that if the given row is empty,
+                                     * i.e. does not contain any nonzero
+                                     * entries, then the iterator returned by
+                                     * this function equals
+                                     * <tt>end(r)</tt>. Note also that the
+                                     * iterator may not be dereferencable in
+                                     * that case.
                                      */
-    inline unsigned int n_cols () const;
+    inline iterator begin (const unsigned int r) const;
 
-                                    /**
-                                     * Check if a value at a certain
-                                     * position may be non-zero.
+                                    /**
+                                     * Final iterator of row <tt>r</tt>. It
+                                     * points to the first element past the
+                                     * end of line @p r, or past the end of
+                                     * the entire sparsity pattern.
+                                     *
+                                     * Note that the end iterator is not
+                                     * necessarily dereferencable. This is in
+                                     * particular the case if it is the end
+                                     * iterator for the last row of a matrix.
                                      */
-    bool exists (const unsigned int i,
-                 const unsigned int j) const;
+    inline iterator end (const unsigned int r) const;
 
                                     /**
-                                     * Number of entries in a specific row.
+                                     * STL-like iterator with the first entry
+                                     * of row <tt>r</tt>.
+                                     *
+                                     * Note that if the given row is empty,
+                                     * i.e. does not contain any nonzero
+                                     * entries, then the iterator returned by
+                                     * this function equals
+                                     * <tt>end(r)</tt>. Note also that the
+                                     * iterator may not be dereferencable in
+                                     * that case.
                                      */
-    unsigned int row_length (const unsigned int row) const;
+    inline row_iterator row_begin (const unsigned int r) const;
 
                                     /**
-                                     * Access to column number field.
-                                     * Return the column number of
-                                     * the <tt>index</tt>th entry in
-                                     * <tt>row</tt>. Note that if
-                                     * diagonal elements are
-                                     * optimized, the first element
-                                     * in each row is the diagonal
-                                     * element,
-                                     * i.e. <tt>column_number(row,0)==row</tt>.
+                                     * Final iterator of row <tt>r</tt>. It
+                                     * points to the first element past the
+                                     * end of line @p r, or past the end of
+                                     * the entire sparsity pattern.
                                      *
-                                     * If the sparsity pattern is
-                                     * already compressed, then
-                                     * (except for the diagonal
-                                     * element), the entries are
-                                     * sorted by columns,
-                                     * i.e. <tt>column_number(row,i)</tt>
-                                     * <tt><</tt> <tt>column_number(row,i+1)</tt>.
+                                     * Note that the end iterator is not
+                                     * necessarily dereferencable. This is in
+                                     * particular the case if it is the end
+                                     * iterator for the last row of a matrix.
                                      */
-    unsigned int column_number (const unsigned int row,
-                               const unsigned int index) const;
+    inline row_iterator row_end (const unsigned int r) const;
 
+// @}
+/**
+ * @name Querying information
+ */
+// @{
                                     /**
-                                     * Compute the bandwidth of the matrix
-                                     * represented by this structure. The
-                                     * bandwidth is the maximum of $|i-j|$
-                                     * for which the index pair $(i,j)$
-                                     * represents a nonzero entry of the
-                                     * matrix. Consequently, the maximum
-                                     * bandwidth a $n\times m$ matrix can
+                                     *  Test for equality of two SparsityPatterns.
+                                     */
+    bool operator == (const SparsityPattern &)  const;
+
+                                    /**
+                                     * Return whether the object is empty. It
+                                     * is empty if no memory is allocated,
+                                     * which is the same as that both
+                                     * dimensions are zero.
+                                     */
+    bool empty () const;
+
+                                    /**
+                                     * Return the maximum number of entries per
+                                     * row. Before compression, this equals the
+                                     * number given to the constructor, while
+                                     * after compression, it equals the maximum
+                                     * number of entries actually allocated by
+                                     * the user.
+                                     */
+    unsigned int max_entries_per_row () const;
+
+                                    /**
+                                     * Compute the bandwidth of the matrix
+                                     * represented by this structure. The
+                                     * bandwidth is the maximum of $|i-j|$
+                                     * for which the index pair $(i,j)$
+                                     * represents a nonzero entry of the
+                                     * matrix. Consequently, the maximum
+                                     * bandwidth a $n\times m$ matrix can
                                      * have is $\max\{n-1,m-1\}$.
                                      */
     unsigned int bandwidth () const;
@@ -1066,6 +975,25 @@ class SparsityPattern : public Subscriptor
                                      */
     bool is_compressed () const;
 
+                                    /**
+                                     * Return number of rows of this
+                                     * matrix, which equals the dimension
+                                     * of the image space.
+                                     */
+    inline unsigned int n_rows () const;
+
+                                    /**
+                                     * Return number of columns of this
+                                     * matrix, which equals the dimension
+                                     * of the range space.
+                                     */
+    inline unsigned int n_cols () const;
+
+                                    /**
+                                     * Number of entries in a specific row.
+                                     */
+    unsigned int row_length (const unsigned int row) const;
+
                                     /**
                                      * Determine whether the matrix
                                      * uses special convention for
@@ -1122,70 +1050,108 @@ class SparsityPattern : public Subscriptor
                                      */
     bool stores_only_added_elements () const;
 
-                                     /**
-                                     * @deprecated
+                                    /**
+                                     * Determine an estimate for the
+                                     * memory consumption (in bytes)
+                                     * of this object. See
+                                     * MemoryConsumption.
+                                     */
+    std::size_t memory_consumption () const;
+
+// @}
+/**
+ * @name Accessing entries
+ */
+// @{
+                                    /**
+                                     * Return the index of the matrix
+                                     * element with row number <tt>i</tt>
+                                     * and column number <tt>j</tt>. If
+                                     * the matrix element is not a
+                                     * nonzero one, return
+                                     * SparsityPattern::invalid_entry.
                                      *
-                                     * This function is deprecated. Use
-                                     * SparsityTools::partition instead.
+                                     * This function is usually
+                                     * called by the
+                                     * SparseMatrix::operator()(). It
+                                     * may only be called for
+                                     * compressed sparsity patterns,
+                                     * since in this case searching
+                                     * whether the entry exists can
+                                     * be done quite fast with a
+                                     * binary sort algorithm because
+                                     * the column numbers are sorted.
                                      *
-                                      * Use the METIS partitioner to generate
-                                      * a partitioning of the degrees of
-                                      * freedom represented by this sparsity
-                                      * pattern. In effect, we view this
-                                      * sparsity pattern as a graph of
-                                      * connections between various degrees of
-                                      * freedom, where each nonzero entry in
-                                      * the sparsity pattern corresponds to an
-                                      * edge between two nodes in the
-                                      * connection graph. The goal is then to
-                                      * decompose this graph into groups of
-                                      * nodes so that a minimal number of
-                                      * edges are cut by the boundaries
-                                      * between node groups. This partitioning
-                                      * is done by METIS. Note that METIS can
-                                      * only partition symmetric sparsity
-                                      * patterns, and that of course the
-                                      * sparsity pattern has to be square. We
-                                      * do not check for symmetry of the
-                                      * sparsity pattern, since this is an
-                                      * expensive operation, but rather leave
-                                      * this as the responsibility of caller
-                                      * of this function.
-                                      *
-                                      * After calling this function, the
-                                      * output array will have values between
-                                      * zero and @p n_partitions-1 for each
-                                      * node (i.e. row or column of the
-                                      * matrix).
-                                      *
-                                      * This function will generate an error
-                                      * if METIS is not installed unless
-                                      * @p n_partitions is one. I.e., you can
-                                      * write a program so that it runs in the
-                                      * single-processor single-partition case
-                                      * without METIS installed, and only
-                                      * requires METIS when multiple
-                                      * partitions are required.
-                                      *
-                                      * Note that the sparsity pattern itself
-                                      * is not changed by calling this
-                                      * function. However, you will likely use
-                                      * the information generated by calling
-                                      * this function to renumber degrees of
-                                      * freedom, after which you will of
-                                      * course have to regenerate the sparsity
-                                      * pattern.
-                                      *
-                                      * This function will rarely be called
-                                      * separately, since in finite element
-                                      * methods you will want to partition the
-                                      * mesh, not the matrix. This can be done
-                                      * by calling
-                                      * @p GridTools::partition_triangulation.
-                                      */
-    void partition (const unsigned int         n_partitions,
-                    std::vector<unsigned int> &partition_indices) const;
+                                     * If <tt>m</tt> is the number of
+                                     * entries in <tt>row</tt>, then the
+                                     * complexity of this function is
+                                     * <i>log(m)</i> if the sparsity
+                                     * pattern is compressed.
+                                     *
+                                     * @deprecated Use
+                                     * SparseMatrix::const_iterator
+                                     */
+    unsigned int operator() (const unsigned int i,
+                            const unsigned int j) const;
+
+                                    /**
+                                     * This is the inverse operation
+                                     * to operator()(): given a
+                                     * global index, find out row and
+                                     * column of the matrix entry to
+                                     * which it belongs. The returned
+                                     * value is the pair composed of
+                                     * row and column index.
+                                     *
+                                     * This function may only be
+                                     * called if the sparsity pattern
+                                     * is closed. The global index
+                                     * must then be between zero and
+                                     * n_nonzero_elements().
+                                     *
+                                     * If <tt>N</tt> is the number of
+                                     * rows of this matrix, then the
+                                     * complexity of this function is
+                                     * <i>log(N)</i>.
+                                     */
+    std::pair<unsigned int, unsigned int>
+    matrix_position (const unsigned int global_index) const;
+
+                                    /**
+                                     * Check if a value at a certain
+                                     * position may be non-zero.
+                                     */
+    bool exists (const unsigned int i,
+                 const unsigned int j) const;
+
+                                    /**
+                                     * Access to column number field.
+                                     * Return the column number of
+                                     * the <tt>index</tt>th entry in
+                                     * <tt>row</tt>. Note that if
+                                     * diagonal elements are
+                                     * optimized, the first element
+                                     * in each row is the diagonal
+                                     * element,
+                                     * i.e. <tt>column_number(row,0)==row</tt>.
+                                     *
+                                     * If the sparsity pattern is
+                                     * already compressed, then
+                                     * (except for the diagonal
+                                     * element), the entries are
+                                     * sorted by columns,
+                                     * i.e. <tt>column_number(row,i)</tt>
+                                     * <tt><</tt> <tt>column_number(row,i+1)</tt>.
+                                     */
+    unsigned int column_number (const unsigned int row,
+                               const unsigned int index) const;
 
+    
+// @}
+/**
+ * @name Input/Output
+ */
+// @{
                                     /**
                                      * Write the data of this object
                                      * en bloc to a file. This is
@@ -1269,14 +1235,89 @@ class SparsityPattern : public Subscriptor
                                      * <tt>plot</tt> command.
                                      */
     void print_gnuplot (std::ostream &out) const;
+                     /**
+                      * Write the data of this object to 
+                      * a stream for the purpose of serialization
+                      */ 
+    template <class Archive>
+    void save (Archive & ar, const unsigned int version) const;
+
+                     /**
+                      * Read the data of this object 
+                      * from a stream for the purpose of serialization
+                      */    
+    template <class Archive>
+    void load (Archive & ar, const unsigned int version);
+
+// @}
+/**
+ * @name Deprecated functions
+ */
+// @{
+                                     /**
+                                     * @deprecated
+                                     *
+                                     * This function is deprecated. Use
+                                     * SparsityTools::partition instead.
+                                     *
+                                      * Use the METIS partitioner to generate
+                                      * a partitioning of the degrees of
+                                      * freedom represented by this sparsity
+                                      * pattern. In effect, we view this
+                                      * sparsity pattern as a graph of
+                                      * connections between various degrees of
+                                      * freedom, where each nonzero entry in
+                                      * the sparsity pattern corresponds to an
+                                      * edge between two nodes in the
+                                      * connection graph. The goal is then to
+                                      * decompose this graph into groups of
+                                      * nodes so that a minimal number of
+                                      * edges are cut by the boundaries
+                                      * between node groups. This partitioning
+                                      * is done by METIS. Note that METIS can
+                                      * only partition symmetric sparsity
+                                      * patterns, and that of course the
+                                      * sparsity pattern has to be square. We
+                                      * do not check for symmetry of the
+                                      * sparsity pattern, since this is an
+                                      * expensive operation, but rather leave
+                                      * this as the responsibility of caller
+                                      * of this function.
+                                      *
+                                      * After calling this function, the
+                                      * output array will have values between
+                                      * zero and @p n_partitions-1 for each
+                                      * node (i.e. row or column of the
+                                      * matrix).
+                                      *
+                                      * This function will generate an error
+                                      * if METIS is not installed unless
+                                      * @p n_partitions is one. I.e., you can
+                                      * write a program so that it runs in the
+                                      * single-processor single-partition case
+                                      * without METIS installed, and only
+                                      * requires METIS when multiple
+                                      * partitions are required.
+                                      *
+                                      * Note that the sparsity pattern itself
+                                      * is not changed by calling this
+                                      * function. However, you will likely use
+                                      * the information generated by calling
+                                      * this function to renumber degrees of
+                                      * freedom, after which you will of
+                                      * course have to regenerate the sparsity
+                                      * pattern.
+                                      *
+                                      * This function will rarely be called
+                                      * separately, since in finite element
+                                      * methods you will want to partition the
+                                      * mesh, not the matrix. This can be done
+                                      * by calling
+                                      * @p GridTools::partition_triangulation.
+                                      */
+    void partition (const unsigned int         n_partitions,
+                    std::vector<unsigned int> &partition_indices) const;
 
-                                    /**
-                                     * Determine an estimate for the
-                                     * memory consumption (in bytes)
-                                     * of this object. See
-                                     * MemoryConsumption.
-                                     */
-    std::size_t memory_consumption () const;
 
                                     /**
                                      * This is kind of an expert mode. Get
@@ -1335,20 +1376,6 @@ class SparsityPattern : public Subscriptor
                                      */
     inline const unsigned int * get_column_numbers () const;
     
-                     /**
-                      * Write the data of this object to 
-                      * a stream for the purpose of serialization
-                      */ 
-    template <class Archive>
-    void save (Archive & ar, const unsigned int version) const;
-
-                     /**
-                      * Read the data of this object 
-                      * from a stream for the purpose of serialization
-                      */    
-    template <class Archive>
-    void load (Archive & ar, const unsigned int version);
-
     BOOST_SERIALIZATION_SPLIT_MEMBER()
 
                                     /** @addtogroup Exceptions

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.