@code
set style data lines
set size 0.721, 1
-set nokey
+unset key
plot [-1:1][-1:1] "ball0_mapping_q1.dat"
@endcode
or using one of the other filenames. The second line makes sure that
Computation of Pi by the area:
==============================
Degree = 1
-cells eval.pi error
-5 1.9999999999999998 1.1416e+00 -
-20 2.8284271247461898 3.1317e-01 1.87
-80 3.0614674589207178 8.0125e-02 1.97
-320 3.1214451522580520 2.0148e-02 1.99
-1280 3.1365484905459389 5.0442e-03 2.00
-5120 3.1403311569547521 1.2615e-03 2.00
+cells eval.pi error
+ 5 1.9999999999999993 1.1416e+00 -
+ 20 2.8284271247461894 3.1317e-01 1.87
+ 80 3.0614674589207178 8.0125e-02 1.97
+ 320 3.1214451522580520 2.0148e-02 1.99
+ 1280 3.1365484905459393 5.0442e-03 2.00
+ 5120 3.1403311569547534 1.2615e-03 2.00
Degree = 2
-cells eval.pi error
-5 3.1045694996615869 3.7023e-02 -
-20 3.1391475703122276 2.4451e-03 3.92
-80 3.1414377167038303 1.5494e-04 3.98
-320 3.1415829366419019 9.7169e-06 4.00
-1280 3.1415920457576907 6.0783e-07 4.00
-5120 3.1415926155921126 3.7998e-08 4.00
+cells eval.pi error
+ 5 3.1045694996615865 3.7023e-02 -
+ 20 3.1391475703122271 2.4451e-03 3.92
+ 80 3.1414377167038303 1.5494e-04 3.98
+ 320 3.1415829366419015 9.7169e-06 4.00
+ 1280 3.1415920457576911 6.0783e-07 4.00
+ 5120 3.1415926155921139 3.7998e-08 4.00
Degree = 3
-cells eval.pi error
-5 3.1465390309173475 4.9464e-03 -
-20 3.1419461263297386 3.5347e-04 3.81
-80 3.1416154689089382 2.2815e-05 3.95
-320 3.1415940909713274 1.4374e-06 3.99
-1280 3.1415927436051230 9.0015e-08 4.00
-5120 3.1415926592185492 5.6288e-09 4.00
+cells eval.pi error
+ 5 3.1410033851499310 5.8927e-04 -
+ 20 3.1415830393583861 9.6142e-06 5.94
+ 80 3.1415925017363837 1.5185e-07 5.98
+ 320 3.1415926512106722 2.3791e-09 6.00
+ 1280 3.1415926535525962 3.7197e-11 6.00
+ 5120 3.1415926535892140 5.7923e-13 6.00
Degree = 4
-cells eval.pi error
-5 3.1418185737113964 2.2592e-04 -
-20 3.1415963919525050 3.7384e-06 5.92
-80 3.1415927128397780 5.9250e-08 5.98
-320 3.1415926545188264 9.2903e-10 5.99
-1280 3.1415926536042722 1.4479e-11 6.00
-5120 3.1415926535899668 1.7343e-13 6.38
-
+cells eval.pi error
+ 5 3.1415871927401127 5.4608e-06 -
+ 20 3.1415926314742437 2.2116e-08 7.95
+ 80 3.1415926535026228 8.7170e-11 7.99
+ 320 3.1415926535894529 3.4036e-13 8.00
+ 1280 3.1415926535897927 2.9187e-16 10.19
+ 5120 3.1415926535897944 1.3509e-15 -2.21
Computation of Pi by the perimeter:
===================================
Degree = 1
-cells eval.pi error
-5 2.8284271247461903 3.1317e-01 -
-20 3.0614674589207183 8.0125e-02 1.97
-80 3.1214451522580524 2.0148e-02 1.99
-320 3.1365484905459393 5.0442e-03 2.00
-1280 3.1403311569547525 1.2615e-03 2.00
-5120 3.1412772509327729 3.1540e-04 2.00
+cells eval.pi error
+ 5 2.8284271247461898 3.1317e-01 -
+ 20 3.0614674589207178 8.0125e-02 1.97
+ 80 3.1214451522580520 2.0148e-02 1.99
+ 320 3.1365484905459393 5.0442e-03 2.00
+ 1280 3.1403311569547525 1.2615e-03 2.00
+ 5120 3.1412772509327729 3.1540e-04 2.00
Degree = 2
-cells eval.pi error
-5 3.1248930668550599 1.6700e-02 -
-20 3.1404050605605454 1.1876e-03 3.81
-80 3.1415157631807014 7.6890e-05 3.95
-320 3.1415878042798613 4.8493e-06 3.99
-1280 3.1415923498174538 3.0377e-07 4.00
-5120 3.1415926345932004 1.8997e-08 4.00
+cells eval.pi error
+ 5 3.1248930668550594 1.6700e-02 -
+ 20 3.1404050605605449 1.1876e-03 3.81
+ 80 3.1415157631807014 7.6890e-05 3.95
+ 320 3.1415878042798617 4.8493e-06 3.99
+ 1280 3.1415923498174534 3.0377e-07 4.00
+ 5120 3.1415926345932004 1.8997e-08 4.00
Degree = 3
-cells eval.pi error
-5 3.1442603311164286 2.6677e-03 -
-20 3.1417729561193588 1.8030e-04 3.89
-80 3.1416041192612365 1.1466e-05 3.98
-320 3.1415933731961760 7.1961e-07 3.99
-1280 3.1415926986118001 4.5022e-08 4.00
-5120 3.1415926564043946 2.8146e-09 4.00
+cells eval.pi error
+ 5 3.1414940401456057 9.8613e-05 -
+ 20 3.1415913432549156 1.3103e-06 6.23
+ 80 3.1415926341726914 1.9417e-08 6.08
+ 320 3.1415926532906893 2.9910e-10 6.02
+ 1280 3.1415926535851360 4.6571e-12 6.01
+ 5120 3.1415926535897203 7.2845e-14 6.00
Degree = 4
-cells eval.pi error
-5 3.1417078926581086 1.1524e-04 -
-20 3.1415945317216001 1.8781e-06 5.94
-80 3.1415926832497720 2.9660e-08 5.98
-320 3.1415926540544636 4.6467e-10 6.00
-1280 3.1415926535970535 7.2602e-12 6.00
-5120 3.1415926535899010 1.0805e-13 6.07
+cells eval.pi error
+ 5 3.1415921029432576 5.5065e-07 -
+ 20 3.1415926513737600 2.2160e-09 7.96
+ 80 3.1415926535810712 8.7218e-12 7.99
+ 320 3.1415926535897594 3.3668e-14 8.02
+ 1280 3.1415926535897922 1.0617e-15 4.99
+ 5120 3.1415926535897931 1.0061e-16 3.40
@endcode
-One of the immediate observations from the output is that in all cases
-the values converge quickly to the true value of
-$\pi=3.141592653589793238462643$. Note that for the $Q_4$ mapping, the last
-number is correct to 13 digits in both computations, which is already
-quite a lot. However, also note that for the $Q_1$ mapping, even on the
-finest grid the accuracy is significantly worse than on the coarse
-grid for a $Q_4$ mapping!
+One of the immediate observations from the output is that in all cases the
+values converge quickly to the true value of
+$\pi=3.141592653589793238462643$. Note that for the $Q_4$ mapping, we are
+already in the regime of roundoff errors and the convergence rate levels off,
+which is already quite a lot. However, also note that for the $Q_1$ mapping,
+even on the finest grid the accuracy is significantly worse than on the coarse
+grid for a $Q_3$ mapping!
-The last column of the output shows the convergence order, in powers
-of the mesh width $h$. In the introduction, we had stated that
-the convergence order for a $Q_p$ mapping should be
-$h^{p+1}$. However, in the example shown, the $Q_2$ and $Q_4$
-mappings show a convergence order of $h^{p+2}$! This at
-first surprising fact is readily explained by the particular boundary
-we have chosen in this example. In fact, the circle is described by the function
-$\sqrt{1-x^2}$, which has the series expansion
-$1-x^2/2-x^4/8-x^6/16+\ldots$
-around $x=0$. Thus, for the quadratic mapping where the
-truncation error of the quadratic approximation should be cubic, there
-is no such term but only a quartic one, which raises the convergence
-order to 4, instead of 3. The same happens for the $Q_4$ mapping.
+The last column of the output shows the convergence order, in powers of the
+mesh width $h$. In the introduction, we had stated that the convergence order
+for a $Q_p$ mapping should be $h^{p+1}$. However, in the example shown, the
+order is rather $h^{2p}$! This at first surprising fact is explained by the
+properties of the $Q_p$ mapping. At order <i>p</i>, it uses support points
+that are based on the <i>p</i>+1 point Gauss-Lobatto quadrature rule that
+selects the support points in such a way that the quadrature rule converges at
+order 2<i>p</i>. Even though these points are here only used for interpolation
+of a <i>p</i>th order polynomial, we get a superconvergence effect when
+numerically evaluating the integral that actually gives this high order of
+convergence.