!condition_number_signal.empty() || !all_condition_numbers_signal.empty() ||
!eigenvalues_signal.empty() || !all_eigenvalues_signal.empty();
- // vectors used for eigenvalue
- // computations
+ // vectors used for eigenvalue computations
std::vector<typename VectorType::value_type> diagonal;
std::vector<typename VectorType::value_type> offdiagonal;
- int it = 0;
- double res = -std::numeric_limits<double>::max();
-
typename VectorType::value_type eigen_beta_alpha = 0;
- // resize the vectors, but do not set
- // the values since they'd be overwritten
+ // resize the vectors, but do not set the values since they'd be overwritten
// soon anyway.
g.reinit(x, true);
d.reinit(x, true);
h.reinit(x, true);
- number gh, beta;
+ int it = 0;
+ number gh = number(), beta = number(), alpha = number();
- // compute residual. if vector is
- // zero, then short-circuit the
- // full computation
+ // compute residual. if vector is zero, then short-circuit the full
+ // computation
if (!x.all_zero())
{
A.vmult(g, x);
}
else
g.equ(-1., b);
- res = g.l2_norm();
- conv = this->iteration_status(0, res, x);
+ double res = g.l2_norm();
+ conv = this->iteration_status(0, res, x);
if (conv != SolverControl::iterate)
return;
- if (std::is_same<PreconditionerType, PreconditionIdentity>::value == false)
+ while (conv == SolverControl::iterate)
{
- preconditioner.vmult(h, g);
+ it++;
+ number old_alpha = alpha;
- d.equ(-1., h);
+ if (it > 1)
+ {
+ if (std::is_same<PreconditionerType, PreconditionIdentity>::value ==
+ false)
+ {
+ preconditioner.vmult(h, g);
- gh = g * h;
- }
- else
- {
- d.equ(-1., g);
- gh = res * res;
- }
+ beta = gh;
+ Assert(std::abs(beta) != 0., ExcDivideByZero());
+ gh = g * h;
+ beta = gh / beta;
+ d.sadd(beta, -1., h);
+ }
+ else
+ {
+ beta = gh;
+ gh = res * res;
+ beta = gh / beta;
+ d.sadd(beta, -1., g);
+ }
+ }
+ else
+ {
+ if (std::is_same<PreconditionerType, PreconditionIdentity>::value ==
+ false)
+ {
+ preconditioner.vmult(h, g);
+
+ d.equ(-1., h);
+
+ gh = g * h;
+ }
+ else
+ {
+ d.equ(-1., g);
+ gh = res * res;
+ }
+ }
- while (conv == SolverControl::iterate)
- {
- it++;
A.vmult(h, d);
- number alpha = d * h;
+ alpha = d * h;
Assert(std::abs(alpha) != 0., ExcDivideByZero());
alpha = gh / alpha;
print_vectors(it, x, g, d);
conv = this->iteration_status(it, res, x);
- if (conv != SolverControl::iterate)
- break;
- if (std::is_same<PreconditionerType, PreconditionIdentity>::value ==
- false)
+ if (it > 1)
{
- preconditioner.vmult(h, g);
-
- beta = gh;
- Assert(std::abs(beta) != 0., ExcDivideByZero());
- gh = g * h;
- beta = gh / beta;
- d.sadd(beta, -1., h);
- }
- else
- {
- beta = gh;
- gh = res * res;
- beta = gh / beta;
- d.sadd(beta, -1., g);
- }
-
- this->coefficients_signal(alpha, beta);
- // set up the vectors
- // containing the diagonal
- // and the off diagonal of
- // the projected matrix.
- if (do_eigenvalues)
- {
- diagonal.push_back(number(1.) / alpha + eigen_beta_alpha);
- eigen_beta_alpha = beta / alpha;
- offdiagonal.push_back(std::sqrt(beta) / alpha);
+ this->coefficients_signal(old_alpha, beta);
+ // set up the vectors containing the diagonal and the off diagonal of
+ // the projected matrix.
+ if (do_eigenvalues)
+ {
+ diagonal.push_back(number(1.) / old_alpha + eigen_beta_alpha);
+ eigen_beta_alpha = beta / old_alpha;
+ offdiagonal.push_back(std::sqrt(beta) / old_alpha);
+ }
+ compute_eigs_and_cond(diagonal,
+ offdiagonal,
+ all_eigenvalues_signal,
+ all_condition_numbers_signal);
}
- compute_eigs_and_cond(diagonal,
- offdiagonal,
- all_eigenvalues_signal,
- all_condition_numbers_signal);
}
compute_eigs_and_cond(diagonal,