const unsigned char face_orientation) const override
{
static const std::array<std::array<unsigned int, 2>, 3> table = {
- {{0, 1}, {1, 2}, {2, 0}}};
+ {{{0, 1}}, {{1, 2}}, {{2, 0}}}};
return table[face][face_orientation ? vertex : (1 - vertex)];
}
AssertIndexRange(face, n_faces());
const static std::array<std::array<unsigned int, 3>, 4> table = {
- {{0, 1, 2}, {0, 3, 4}, {2, 5, 3}, {1, 4, 5}}};
+ {{{0, 1, 2}}, {{0, 3, 4}}, {{2, 5, 3}}, {{1, 4, 5}}}};
return table[face][standard_to_real_face_line(
line, face, face_orientation)];
const unsigned char face_orientation) const override
{
static const std::array<std::array<unsigned int, 3>, 4> table = {
- {{0, 1, 2}, {1, 0, 3}, {0, 2, 3}, {2, 1, 3}}};
+ {{{0, 1, 2}}, {{1, 0, 3}}, {{0, 2, 3}}, {{2, 1, 3}}}};
return table[face][standard_to_real_face_vertex(
vertex, face, face_orientation)];
// ... on to the faces (defined by its support points and arc length)
const std::array<std::pair<std::array<Point<2>, 2>, double>, 3> faces = {
- {{{Point<2>(0.0, 0.0), Point<2>(1.0, 0.0)}, 1.0},
- {{Point<2>(1.0, 0.0), Point<2>(0.0, 1.0)}, std::sqrt(2.0)},
- {{Point<2>(0.0, 1.0), Point<2>(0.0, 0.0)}, 1.0}}};
+ {{{{Point<2>(0.0, 0.0), Point<2>(1.0, 0.0)}}, 1.0},
+ {{{Point<2>(1.0, 0.0), Point<2>(0.0, 1.0)}}, std::sqrt(2.0)},
+ {{{Point<2>(0.0, 1.0), Point<2>(0.0, 0.0)}}, 1.0}}};
// linear polynomial to map the reference quadrature points correctly
// on faces
switch (orientation)
{
case 0:
- support_points = {face.first[1], face.first[0]};
+ support_points = {{face.first[1], face.first[0]}};
break;
case 1:
- support_points = {face.first[0], face.first[1]};
+ support_points = {{face.first[0], face.first[1]}};
break;
default:
Assert(false, ExcNotImplemented());
// ... on to the faces (defined by its support points and its area)
// note: the area is later not used as a scaling factor but recomputed
const std::array<std::pair<std::array<Point<3>, 3>, double>, 4> faces = {
- {{{Point<3>(0.0, 0.0, 0.0),
- Point<3>(1.0, 0.0, 0.0),
- Point<3>(0.0, 1.0, 0.0)},
+ {{{{Point<3>(0.0, 0.0, 0.0),
+ Point<3>(1.0, 0.0, 0.0),
+ Point<3>(0.0, 1.0, 0.0)}},
0.5},
- {{Point<3>(1.0, 0.0, 0.0),
- Point<3>(0.0, 0.0, 0.0),
- Point<3>(0.0, 0.0, 1.0)},
+ {{{Point<3>(1.0, 0.0, 0.0),
+ Point<3>(0.0, 0.0, 0.0),
+ Point<3>(0.0, 0.0, 1.0)}},
0.5},
- {{Point<3>(0.0, 0.0, 0.0),
- Point<3>(0.0, 1.0, 0.0),
- Point<3>(0.0, 0.0, 1.0)},
+ {{{Point<3>(0.0, 0.0, 0.0),
+ Point<3>(0.0, 1.0, 0.0),
+ Point<3>(0.0, 0.0, 1.0)}},
0.5},
- {{Point<3>(0.0, 1.0, 0.0),
- Point<3>(1.0, 0.0, 0.0),
- Point<3>(0.0, 0.0, 1.0)},
+ {{{Point<3>(0.0, 1.0, 0.0),
+ Point<3>(1.0, 0.0, 0.0),
+ Point<3>(0.0, 0.0, 1.0)}},
0.5 * sqrt(3.0) /*equilateral triangle*/}}};
// linear polynomial to map the reference quadrature points correctly
switch (orientation)
{
case 1:
- support_points = {face.first[0],
- face.first[1],
- face.first[2]};
+ support_points = {
+ {face.first[0], face.first[1], face.first[2]}};
break;
case 3:
- support_points = {face.first[1],
- face.first[0],
- face.first[2]};
+ support_points = {
+ {face.first[1], face.first[0], face.first[2]}};
break;
case 5:
- support_points = {face.first[2],
- face.first[0],
- face.first[1]};
+ support_points = {
+ {face.first[2], face.first[0], face.first[1]}};
break;
case 0:
- support_points = {face.first[0],
- face.first[2],
- face.first[1]};
+ support_points = {
+ {face.first[0], face.first[2], face.first[1]}};
break;
case 2:
- support_points = {face.first[1],
- face.first[2],
- face.first[0]};
+ support_points = {
+ {face.first[1], face.first[2], face.first[0]}};
break;
case 4:
- support_points = {face.first[2],
- face.first[1],
- face.first[0]};
+ support_points = {
+ {face.first[2], face.first[1], face.first[0]}};
break;
default:
Assert(false, ExcNotImplemented());