// will only use them for two space dimensions.
//
// The first of these functions just generates a triangulation of a circle
- // (hyperball) and outputs the Qp mapping of its cells for different values
+ // (hyperball) and outputs the $Q_p$ mapping of its cells for different values
// of <code>p</code>. Then, we refine the grid once and do so again.
template <int dim>
void gnuplot_output()
std::string filename_base = "ball";
filename_base += '0'+refinement;
- // Then output the present grid for Q1, Q2, and Q3 mappings:
+ // Then output the present grid for $Q_1$, $Q_2$, and $Q_3$ mappings:
for (unsigned int degree=1; degree<4; ++degree)
{
std::cout << "Degree = " << degree << std::endl;
fe_values.reinit (cell);
for (unsigned int i=0; i<fe_values.n_quadrature_points; ++i)
area += fe_values.JxW (i);
- };
+ }
// ...and store the resulting area values and the errors in the
// table. We need a static cast to double as there is no
// returns a double).
table.add_value("eval.pi", static_cast<double> (area));
table.add_value("error", static_cast<double> (std::fabs(area-pi)));
- };
+ }
// We want to compute the convergence rates of the `error'
// column. Therefore we need to omit the other columns from the
table.write_text(std::cout);
std::cout << std::endl;
- };
+ }
}
fe_face_values.reinit (cell, face_no);
for (unsigned int i=0; i<fe_face_values.n_quadrature_points; ++i)
perimeter += fe_face_values.JxW (i);
- };
+ }
// Then store the evaluated values in the table...
table.add_value("eval.pi", static_cast<double> (perimeter/2.));
table.add_value("error", static_cast<double> (std::fabs(perimeter/2.-pi)));
- };
+ }
// ...and end this function as we did in the previous one:
table.omit_column_from_convergence_rate_evaluation("cells");
table.write_text(std::cout);
std::cout << std::endl;
- };
+ }
}
}