/**
* A collection of tensor definitions for deformation and strain measures,
* as well as a few special transformations, that conform to notation used
- in
- * standard scientific literature, in particular the books of
+ * in standard scientific literature, in particular the books of
* Holzapfel (2007) and Wriggers (2008). The citation for these references,
* as well as other notation used here, can be found in the description for
* the Physics::Elasticity namespace.
- * @note These hold specifically for the codimension
- * 0 case, where the metric tensor is the identity tensor.
-*/
+ * @note These hold specifically for the codimension 0 case,
+ * where the metric tensor is the identity tensor.
+ */
namespace Kinematics
{
/**
inline Tensor<2, dim, Number>
Physics::Elasticity::Kinematics::F_iso(const Tensor<2, dim, Number> &F)
{
- return std::pow(determinant(F), -1.0 / dim) * F;
+ return internal::NumberType<Number>::value(
+ std::pow(determinant(F), -1.0 / dim)) *
+ F;
}
Physics::Elasticity::StandardTensors<dim>::ddet_F_dC(
const Tensor<2, dim, Number> &F)
{
- return Number(0.5) * determinant(F) * symmetrize(invert(transpose(F) * F));
+ return internal::NumberType<Number>::value(0.5 * determinant(F)) *
+ symmetrize(invert(transpose(F) * F));
}
{
const NumberType & lambda_squared = eig_C[d].first;
const Tensor<1, dim, NumberType> &N = eig_C[d].second;
- C_inv += (1.0 / lambda_squared) * symmetrize(outer_product(N, N));
+ C_inv +=
+ NumberType(1.0 / lambda_squared) * symmetrize(outer_product(N, N));
}
const SymmetricTensor<2, dim, NumberType> I =