// look into the FaceInfo field that collects information from both
// sides of a face once for the global mesh, and pick the face id that
// is not the local one (cell_this).
- for (unsigned int i = 0; i < n_lanes; i++)
+ for (unsigned int i = 0; i < n_lanes; ++i)
{
// compute actual (non vectorized) cell ID
const unsigned int cell_this = this->cell * n_lanes + i;
this->is_interior_face == false)
{
// cell-based face-loop: plus face
- for (unsigned int i = 0; i < v_len; i++)
+ for (unsigned int i = 0; i < v_len; ++i)
{
// compute actual (non vectorized) cell ID
const unsigned int cell_this = this->cell * v_len + i;
{
AssertIndexRange(dof, this->data->dofs_per_component_on_cell);
Tensor<1, n_components_, VectorizedArrayType> return_value;
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
return_value[comp] = this->values_dofs[comp][dof];
return return_value;
}
AssertIndexRange(q_point, this->n_quadrature_points);
const std::size_t nqp = this->n_quadrature_points;
Tensor<1, n_components_, VectorizedArrayType> return_value;
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
return_value[comp] = values_quad[comp * nqp + q_point];
return return_value;
}
if (!is_face && this->cell_type == internal::MatrixFreeFunctions::cartesian)
{
for (unsigned int d = 0; d < dim; ++d)
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
grad_out[comp][d] = gradients_quad[(comp * dim + d) * nqp + q_point] *
this->jacobian[0][d][d];
}
this->jacobian[this->cell_type > internal::MatrixFreeFunctions::affine ?
q_point :
0];
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
for (unsigned int d = 0; d < dim; ++d)
{
grad_out[comp][d] =
Tensor<1, n_components, VectorizedArrayType> grad_out;
if (this->cell_type == internal::MatrixFreeFunctions::cartesian)
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
grad_out[comp] = gradients_quad[(comp * dim + dim - 1) * nqp + q_point] *
(this->normal_x_jacobian[0][dim - 1]);
else
{
const std::size_t index =
this->cell_type <= internal::MatrixFreeFunctions::affine ? 0 : q_point;
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
grad_out[comp] = gradients_quad[comp * dim * nqp + q_point] *
this->normal_x_jacobian[index][0];
// Cartesian cell
if (!is_face && this->cell_type == internal::MatrixFreeFunctions::cartesian)
{
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
for (unsigned int d = 0; d < dim; ++d)
hessian_out[comp][d][d] =
// cell with general Jacobian, but constant within the cell
else if (this->cell_type <= internal::MatrixFreeFunctions::affine)
{
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
VectorizedArrayType tmp[dim][dim];
internal::hessian_unit_times_jac(
this->mapping_data->jacobian_gradients
[1 - this->is_interior_face]
[this->mapping_data->data_index_offsets[this->cell] + q_point];
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
// compute laplacian before the gradient because it needs to access
// unscaled gradient data
// Cartesian cell
if (this->cell_type == internal::MatrixFreeFunctions::cartesian)
{
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
for (unsigned int d = 0; d < dim; ++d)
hessian_out[comp][d] =
hessians_quad[(comp * hdim + d) * nqp + q_point] *
// cell with general Jacobian, but constant within the cell
else if (this->cell_type == internal::MatrixFreeFunctions::affine)
{
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
// compute laplacian before the gradient because it needs to access
// unscaled gradient data
&jac_grad =
this->mapping_data->jacobian_gradients
[0][this->mapping_data->data_index_offsets[this->cell] + q_point];
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
// compute laplacian before the gradient because it needs to access
// unscaled gradient data
this->dof_values_initialized = true;
# endif
AssertIndexRange(dof, this->data->dofs_per_component_on_cell);
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
this->values_dofs[comp][dof] = val_in[comp];
}
for (unsigned int d = 0; d < dim; ++d)
{
const VectorizedArrayType factor = this->jacobian[0][d][d] * JxW;
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
gradients_quad[(comp * dim + d) * nqp + q_point] =
grad_in[comp][d] * factor;
}
const std::size_t nqp = this->n_quadrature_points;
if (this->cell_type == internal::MatrixFreeFunctions::cartesian)
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
for (unsigned int d = 0; d < dim - 1; ++d)
gradients_quad[(comp * dim + d) * nqp + q_point] =
this->cell_type <= internal::MatrixFreeFunctions::affine ? 0 : q_point;
const Tensor<1, dim, VectorizedArrayType> jac =
this->normal_x_jacobian[index];
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
{
VectorizedArrayType factor = grad_in[comp] * this->J_value[index];
if (this->cell_type <= internal::MatrixFreeFunctions::affine)
{
const auto jac_d = this->jacobian[0][d][d];
const VectorizedArrayType factor = jac_d * jac_d * JxW;
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
hessians_quad[(comp * hdim + d) * nqp + q_point] =
hessian_in[comp][d][d] * factor;
}
const auto jac_d = this->jacobian[0][d][d];
const auto jac_e = this->jacobian[0][e][e];
const VectorizedArrayType factor = jac_d * jac_e * JxW;
- for (unsigned int comp = 0; comp < n_components; comp++)
+ for (unsigned int comp = 0; comp < n_components; ++comp)
hessians_quad[(comp * hdim + off_dia) * nqp + q_point] =
2.0 * hessian_in[comp][d][e] * factor;
}
i < this->dof_info->n_vectorization_lanes_filled
[internal::MatrixFreeFunctions::DoFInfo::dof_access_cell]
[this->cell];
- i++)
+ ++i)
{
// compute actual (non vectorized) cell ID
const unsigned int cell_this =
i < this->dof_info->n_vectorization_lanes_filled
[internal::MatrixFreeFunctions::DoFInfo::dof_access_cell]
[this->cell];
- i++)
+ ++i)
{
// compute actual (non vectorized) cell ID
const unsigned int cell_this =