* @p smoothing_range. The algorithm is based on the following three-term
* recurrence:
* @f[
- * x^{n+1} = x^{n} + \rho_n \rho_{n-1} (x^{n} - x^{n-1}) +
- * \frac{\rho_n}{\lambda_{\max{}}-\lambda_{\min{}}} P^{-1} (b-Ax^n).
+ * x^{n+1} = x^{n} + \alpha^n_0 (x^{n} - x^{n-1}) + \alpha^n_1 P^{-1} (b-Ax^n)
+ * \quad\text{with}\quad
+ * \alpha^0_0 := 0,\;
+ * \alpha^0_1 := \frac{2\rho_0}{\lambda_{\max}-\lambda_{\min}}\;
+ * \alpha^n_0 := \rho_n \rho_{n-1},\;\text{and}\;
+ * \alpha^n_1 := \frac{4\rho_n}{\lambda_{\max}-\lambda_{\min}},
* @f]
- * where the parameter $\rho_0$ is set to $\rho_0 = 2
+ * where the parameter $\rho_0$ is set to $\rho_0 =
* \frac{\lambda_{\max{}}-\lambda_{\min{}}}{\lambda_{\max{}}+\lambda_{\min{}}}$
* for the maximal eigenvalue $\lambda_{\max{}}$ and updated via $\rho_n =
* \left(2\frac{\lambda_{\max{}}+\lambda_{\min{}}}