--- /dev/null
+// ---------------------------------------------------------------------
+//
+// Copyright (C) 2022 by the deal.II authors
+//
+// This file is part of the deal.II library.
+//
+// The deal.II library is free software; you can use it, redistribute
+// it, and/or modify it under the terms of the GNU Lesser General
+// Public License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+// The full text of the license can be found in the file LICENSE.md at
+// the top level directory of deal.II.
+//
+// ---------------------------------------------------------------------
+
+#ifndef dealii_tensor_product_matrix_creator_h
+#define dealii_tensor_product_matrix_creator_h
+
+
+#include <deal.II/base/config.h>
+
+#include <deal.II/base/quadrature.h>
+
+#include <deal.II/dofs/dof_handler.h>
+
+#include <deal.II/fe/fe.h>
+#include <deal.II/fe/fe_tools.h>
+#include <deal.II/fe/fe_values.h>
+#include <deal.II/fe/mapping_q1.h>
+
+#include <deal.II/grid/grid_generator.h>
+#include <deal.II/grid/tria.h>
+
+#include <set>
+
+DEAL_II_NAMESPACE_OPEN
+
+
+/**
+ * A namespace with functions that create input for certain standard matrices
+ * for the classes TensorProductMatrixSymmetricSum and
+ * TensorProductMatrixSymmetricSumCache.
+ */
+namespace TensorProductMatrixCreator
+{
+ /**
+ * Boundary type that can be used in create_laplace_tensor_product_matrix();
+ */
+ enum LaplaceBoundaryType
+ {
+ dirichlet,
+ neumann,
+ internal_boundary,
+ };
+
+ /**
+ * Create 1D mass matrix and 1D derivative matrix for a scalar
+ * constant-coefficient
+ * Laplacian for a @p dim dimensional Cartesian cell. Its boundary types
+ * can be specified with @p boundary_ids. The cell extent (including the cell extent
+ * of each neighbor) can be specified via @p cell_extent. With @p n_overlap, an
+ * overlap with neighboring cells can be specified. The default value is one,
+ * which correspond to all matrix entries restricted to the cell-local DoFs.
+ */
+ template <int dim, typename Number>
+ std::pair<std::array<FullMatrix<Number>, dim>,
+ std::array<FullMatrix<Number>, dim>>
+ create_laplace_tensor_product_matrix(
+ const FiniteElement<1> & fe,
+ const Quadrature<1> & quadrature,
+ const dealii::ndarray<LaplaceBoundaryType, dim, 2> &boundary_ids,
+ const dealii::ndarray<double, dim, 3> & cell_extent,
+ const unsigned int n_overlap = 1);
+
+ /**
+ * Same as above but the boundary IDs are extracted from the given @p cell
+ * and are mapped to the boundary type via the sets @p dirichlet_boundaries and @p neumann_boundaries.
+ */
+ template <int dim, typename Number>
+ std::pair<std::array<FullMatrix<Number>, dim>,
+ std::array<FullMatrix<Number>, dim>>
+ create_laplace_tensor_product_matrix(
+ const typename Triangulation<dim>::cell_iterator &cell,
+ const std::set<types::boundary_id> & dirichlet_boundaries,
+ const std::set<types::boundary_id> & neumann_boundaries,
+ const FiniteElement<1> & fe,
+ const Quadrature<1> & quadrature,
+ const dealii::ndarray<double, dim, 3> & cell_extent,
+ const unsigned int n_overlap = 1);
+
+} // namespace TensorProductMatrixCreator
+
+
+
+/*----------------------- Inline functions ----------------------------------*/
+
+
+namespace TensorProductMatrixCreator
+{
+ namespace internal
+ {
+ template <typename Number>
+ std::tuple<FullMatrix<Number>, FullMatrix<Number>, bool>
+ create_reference_mass_and_stiffness_matrices(
+ const FiniteElement<1> &fe,
+ const Quadrature<1> & quadrature)
+ {
+ Triangulation<1> tria;
+ GridGenerator::hyper_cube(tria);
+
+ DoFHandler<1> dof_handler(tria);
+ dof_handler.distribute_dofs(fe);
+
+ MappingQ1<1> mapping;
+
+ const unsigned int n_dofs_1D = fe.n_dofs_per_cell();
+
+ FullMatrix<Number> mass_matrix_reference(n_dofs_1D, n_dofs_1D);
+ FullMatrix<Number> derivative_matrix_reference(n_dofs_1D, n_dofs_1D);
+
+ FEValues<1> fe_values(mapping,
+ fe,
+ quadrature,
+ update_values | update_gradients |
+ update_JxW_values);
+
+ fe_values.reinit(tria.begin());
+
+ const auto lexicographic_to_hierarchic_numbering =
+ Utilities::invert_permutation(
+ FETools::hierarchic_to_lexicographic_numbering<1>(
+ fe.tensor_degree()));
+
+ for (const unsigned int q_index : fe_values.quadrature_point_indices())
+ for (const unsigned int i : fe_values.dof_indices())
+ for (const unsigned int j : fe_values.dof_indices())
+ {
+ mass_matrix_reference(i, j) +=
+ (fe_values.shape_value(lexicographic_to_hierarchic_numbering[i],
+ q_index) *
+ fe_values.shape_value(lexicographic_to_hierarchic_numbering[j],
+ q_index) *
+ fe_values.JxW(q_index));
+
+ derivative_matrix_reference(i, j) +=
+ (fe_values.shape_grad(lexicographic_to_hierarchic_numbering[i],
+ q_index) *
+ fe_values.shape_grad(lexicographic_to_hierarchic_numbering[j],
+ q_index) *
+ fe_values.JxW(q_index));
+ }
+
+ return {mass_matrix_reference, derivative_matrix_reference, false};
+ }
+ } // namespace internal
+
+
+
+ template <int dim, typename Number>
+ std::pair<std::array<FullMatrix<Number>, dim>,
+ std::array<FullMatrix<Number>, dim>>
+ create_laplace_tensor_product_matrix(
+ const FiniteElement<1> & fe,
+ const Quadrature<1> & quadrature,
+ const dealii::ndarray<LaplaceBoundaryType, dim, 2> &boundary_ids,
+ const dealii::ndarray<double, dim, 3> & cell_extent,
+ const unsigned int n_overlap)
+ {
+ // 1) create element mass and siffness matrix (without overlap)
+ const auto create_reference_mass_and_stiffness_matrices =
+ internal::create_reference_mass_and_stiffness_matrices<Number>(
+ fe, quadrature);
+
+ const auto &M_ref =
+ std::get<0>(create_reference_mass_and_stiffness_matrices);
+ const auto &K_ref =
+ std::get<1>(create_reference_mass_and_stiffness_matrices);
+ const auto &is_dg =
+ std::get<2>(create_reference_mass_and_stiffness_matrices);
+
+ AssertIndexRange(n_overlap, M_ref.n());
+ AssertIndexRange(0, n_overlap);
+ AssertThrow(is_dg == false, ExcNotImplemented());
+
+ // 2) loop over all dimensions and create 1D mass and stiffness
+ // matrices so that boundary conditions and overlap are considered
+
+ const unsigned int n_dofs_1D = M_ref.n();
+ const unsigned int n_dofs_1D_with_overlap = M_ref.n() - 2 + 2 * n_overlap;
+
+ std::array<FullMatrix<Number>, dim> Ms;
+ std::array<FullMatrix<Number>, dim> Ks;
+
+ const auto clear_row_and_column = [&](const unsigned int n, auto &matrix) {
+ for (unsigned int i = 0; i < n_dofs_1D_with_overlap; ++i)
+ {
+ matrix[i][n] = 0.0;
+ matrix[n][i] = 0.0;
+ }
+ };
+
+ for (unsigned int d = 0; d < dim; ++d)
+ {
+ Ms[d].reinit(n_dofs_1D_with_overlap, n_dofs_1D_with_overlap);
+ Ks[d].reinit(n_dofs_1D_with_overlap, n_dofs_1D_with_overlap);
+
+ // inner cell
+ for (unsigned int i = 0; i < n_dofs_1D; ++i)
+ for (unsigned int j = 0; j < n_dofs_1D; ++j)
+ {
+ const unsigned int i0 = i + n_overlap - 1;
+ const unsigned int j0 = j + n_overlap - 1;
+ Ms[d][i0][j0] = M_ref[i][j] * cell_extent[d][1];
+ Ks[d][i0][j0] = K_ref[i][j] / cell_extent[d][1];
+ }
+
+ // left neighbor or left boundary
+ if (boundary_ids[d][0] == LaplaceBoundaryType::internal_boundary)
+ {
+ // left neighbor
+ Assert(cell_extent[d][0] > 0.0, ExcInternalError());
+
+ for (unsigned int i = 0; i < n_overlap; ++i)
+ for (unsigned int j = 0; j < n_overlap; ++j)
+ {
+ const unsigned int i0 = n_dofs_1D - n_overlap + i;
+ const unsigned int j0 = n_dofs_1D - n_overlap + j;
+ Ms[d][i][j] += M_ref[i0][j0] * cell_extent[d][0];
+ Ks[d][i][j] += K_ref[i0][j0] / cell_extent[d][0];
+ }
+ }
+ else
+ {
+ if (boundary_ids[d][0] == LaplaceBoundaryType::dirichlet)
+ {
+ // left DBC
+ const unsigned i0 = n_overlap - 1;
+ clear_row_and_column(i0, Ms[d]);
+ clear_row_and_column(i0, Ks[d]);
+ }
+ else if (boundary_ids[d][0] == LaplaceBoundaryType::neumann)
+ {
+ // left NBC -> nothing to do
+ }
+ else
+ {
+ AssertThrow(false, ExcNotImplemented());
+ }
+ }
+
+ // right neighbor or right boundary
+ if (boundary_ids[d][1] == LaplaceBoundaryType::internal_boundary)
+ {
+ Assert(cell_extent[d][2] > 0.0, ExcInternalError());
+
+ for (unsigned int i = 0; i < n_overlap; ++i)
+ for (unsigned int j = 0; j < n_overlap; ++j)
+ {
+ const unsigned int i0 = n_overlap + n_dofs_1D + i - 2;
+ const unsigned int j0 = n_overlap + n_dofs_1D + j - 2;
+ Ms[d][i0][j0] += M_ref[i][j] * cell_extent[d][2];
+ Ks[d][i0][j0] += K_ref[i][j] / cell_extent[d][2];
+ }
+ }
+ else
+ {
+ if (boundary_ids[d][1] == LaplaceBoundaryType::dirichlet)
+ {
+ // right DBC
+ const unsigned i0 = n_overlap + n_dofs_1D - 2;
+ clear_row_and_column(i0, Ms[d]);
+ clear_row_and_column(i0, Ks[d]);
+ }
+ else if (boundary_ids[d][1] == LaplaceBoundaryType::neumann)
+ {
+ // right NBC -> nothing to do
+ }
+ else
+ {
+ AssertThrow(false, ExcNotImplemented());
+ }
+ }
+ }
+
+ return {Ms, Ks};
+ }
+
+
+ template <int dim, typename Number>
+ std::pair<std::array<FullMatrix<Number>, dim>,
+ std::array<FullMatrix<Number>, dim>>
+ create_laplace_tensor_product_matrix(
+ const typename Triangulation<dim>::cell_iterator &cell,
+ const std::set<types::boundary_id> & dirichlet_boundaries,
+ const std::set<types::boundary_id> & neumann_boundaries,
+ const FiniteElement<1> & fe,
+ const Quadrature<1> & quadrature,
+ const dealii::ndarray<double, dim, 3> & cell_extent,
+ const unsigned int n_overlap)
+ {
+ dealii::ndarray<LaplaceBoundaryType, dim, 2> boundary_ids;
+
+ for (unsigned int d = 0; d < dim; ++d)
+ {
+ // left neighbor or left boundary
+ if ((cell->at_boundary(2 * d) == false) ||
+ cell->has_periodic_neighbor(2 * d))
+ {
+ // left neighbor
+ Assert(cell_extent[d][0] > 0.0, ExcInternalError());
+
+ boundary_ids[d][0] = LaplaceBoundaryType::internal_boundary;
+ }
+ else
+ {
+ const auto bid = cell->face(2 * d)->boundary_id();
+ if (dirichlet_boundaries.find(bid) !=
+ dirichlet_boundaries.end() /*DBC*/)
+ {
+ // left DBC
+ boundary_ids[d][0] = LaplaceBoundaryType::dirichlet;
+ }
+ else if (neumann_boundaries.find(bid) !=
+ neumann_boundaries.end() /*NBC*/)
+ {
+ // left NBC
+ boundary_ids[d][0] = LaplaceBoundaryType::neumann;
+ }
+ else
+ {
+ AssertThrow(false, ExcNotImplemented());
+ }
+ }
+
+ // right neighbor or right boundary
+ if ((cell->at_boundary(2 * d + 1) == false) ||
+ cell->has_periodic_neighbor(2 * d + 1))
+ {
+ Assert(cell_extent[d][2] > 0.0, ExcInternalError());
+
+ boundary_ids[d][1] = LaplaceBoundaryType::internal_boundary;
+ }
+ else
+ {
+ const auto bid = cell->face(2 * d + 1)->boundary_id();
+ if (dirichlet_boundaries.find(bid) !=
+ dirichlet_boundaries.end() /*DBC*/)
+ {
+ // right DBC
+ boundary_ids[d][1] = LaplaceBoundaryType::dirichlet;
+ }
+ else if (neumann_boundaries.find(bid) !=
+ neumann_boundaries.end() /*NBC*/)
+ {
+ // right NBC
+ boundary_ids[d][1] = LaplaceBoundaryType::neumann;
+ }
+ else
+ {
+ AssertThrow(false, ExcNotImplemented());
+ }
+ }
+ }
+
+ return create_laplace_tensor_product_matrix<dim, Number>(
+ fe, quadrature, boundary_ids, cell_extent, n_overlap);
+ }
+
+} // namespace TensorProductMatrixCreator
+
+
+
+DEAL_II_NAMESPACE_CLOSE
+
+#endif