* the type you would get if you multiplied an individual component of the
* input tensor by the scalar factor.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
* @relatesalso EnableIfScalar
*/
template <int rank_, int dim, typename Number, typename OtherNumber>
* See the discussion with the operator with switched arguments for more
* information about template arguments and the return type.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
* @relatesalso EnableIfScalar
*/
template <int rank_, int dim, typename Number, typename OtherNumber>
/**
* Division of a symmetric tensor of general rank by a scalar.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int rank_, int dim, typename Number, typename OtherNumber>
constexpr inline SymmetricTensor<
* Multiplication of a symmetric tensor of general rank with a scalar from the
* right.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int rank_, int dim>
constexpr inline DEAL_II_ALWAYS_INLINE SymmetricTensor<rank_, dim>
* Multiplication of a symmetric tensor of general rank with a scalar from the
* left.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int rank_, int dim>
constexpr inline DEAL_II_ALWAYS_INLINE SymmetricTensor<rank_, dim>
/**
* Division of a symmetric tensor of general rank by a scalar.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int rank_, int dim>
constexpr inline SymmetricTensor<rank_, dim>
* the expression <code>A*B</code> which uses
* <code>SymmetricTensor::operator*()</code>.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number, typename OtherNumber>
constexpr DEAL_II_ALWAYS_INLINE typename ProductType<Number, OtherNumber>::type
* $(\mathbf A \cdot\mathbf B)_{ij}=\sum_k A_{ik}B_{kj}$.
*
* @relatesalso Tensor
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number, typename OtherNumber>
constexpr inline DEAL_II_ALWAYS_INLINE
* $(\mathbf A \cdot\mathbf B)_{ij}=\sum_k A_{ik}B_{kj}$.
*
* @relatesalso Tensor
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number, typename OtherNumber>
constexpr DEAL_II_ALWAYS_INLINE typename ProductType<Number, OtherNumber>::type
* magnitude faster. This function mostly exists for compatibility purposes
* with the general Tensor class.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <typename Number, typename OtherNumber>
constexpr inline DEAL_II_ALWAYS_INLINE void
* magnitude faster. This function mostly exists for compatibility purposes
* with the general Tensor class.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <typename Number, typename OtherNumber>
constexpr inline void
* magnitude faster. This function mostly exists for compatibility purposes
* with the general Tensor class.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <typename Number, typename OtherNumber>
constexpr inline void
* magnitude faster. This function mostly exists for compatibility purposes
* with the general Tensor class.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <typename Number, typename OtherNumber>
constexpr inline void
* magnitude faster. This function mostly exists for compatibility purposes
* with the general Tensor class.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <typename Number, typename OtherNumber>
constexpr inline void
* magnitude faster. This function mostly exists for compatibility purposes
* with the general Tensor class.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <typename Number, typename OtherNumber>
constexpr inline void
* Multiply a symmetric rank-2 tensor (i.e., a matrix) by a rank-1 tensor
* (i.e., a vector). The result is a rank-1 tensor (i.e., a vector).
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number, typename OtherNumber>
constexpr Tensor<1, dim, typename ProductType<Number, OtherNumber>::type>
* Multiply a rank-1 tensor (i.e., a vector) by a symmetric rank-2 tensor
* (i.e., a matrix). The result is a rank-1 tensor (i.e., a vector).
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number, typename OtherNumber>
constexpr Tensor<1, dim, typename ProductType<Number, OtherNumber>::type>
* multiplication operator for SymmetricTensor, which does the double
* contraction.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int rank_1,
int rank_2,
* multiplication operator for SymmetricTensor, which does the double
* contraction.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int rank_1,
int rank_2,
* represents the symmetry in the output, for example by outputting only the
* unique entries.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number>
inline std::ostream &
* represents the symmetry in the output, for example by outputting only the
* unique entries.
*
- * @relatesalso SymmetricTensor
+ * @relates SymmetricTensor
*/
template <int dim, typename Number>
inline std::ostream &