std::vector<unsigned int> recv_ptrs;
/**
- * Distribute quadrature points on found intersections and construct
- * GridTools::internal::DistributedComputePointLocationsInternal from
- * class members. This can be done without searching for points again
+ * Distribute quadrature points according to
+ * QGaussSimplex<structdim>(n_points_1D) on found intersections and
+ * construct GridTools::internal::DistributedComputePointLocationsInternal
+ * from class members. This can be done without searching for points again
* since all information is locally known.
*
* The parameter @p consistent_numbering_of_sender_and_receiver can be used to ensure
GridTools::internal::DistributedComputePointLocationsInternal<dim,
spacedim>
convert_to_distributed_compute_point_locations_internal(
- const unsigned int n_quadrature_points,
+ const unsigned int n_points_1D,
const Triangulation<dim, spacedim> &tria,
const Mapping<dim, spacedim> & mapping,
const bool consistent_numbering_of_sender_and_receiver = false) const;
DistributedComputePointLocationsInternal<dim, spacedim>
DistributedComputeIntersectionLocationsInternal<structdim, spacedim>::
convert_to_distributed_compute_point_locations_internal(
- const unsigned int n_quadrature_points,
+ const unsigned int n_points_1D,
const Triangulation<dim, spacedim> &tria,
const Mapping<dim, spacedim> & mapping,
const bool consistent_numbering_of_sender_and_receiver) const
// We need quadrature rules for the intersections. We are using a
// QGaussSimplex quadrature rule since CGAL always returns simplices
// as intersections.
- const QGaussSimplex<structdim> quadrature(n_quadrature_points);
+ const QGaussSimplex<structdim> quadrature(n_points_1D);
// Resulting quadrature points get different indices. In the case the
// requested intersections are unique also the resulting quadrature