// $\mathbf{z}_i$ is the $i$th vector valued test function.
// Furthermore, the scalar product
// $\left(\mathbf{F}(\mathbf{w}), \nabla\mathbf{z}_i\right)_K$ is
- // understood as $\int_K \sum_{c=1}^{\text{n\_components}}
+ // understood as $\int_K \sum_{c=1}^{\text{n_components}}
// \sum_{d=1}^{\text{dim}} \mathbf{F}(\mathbf{w})_{cd}
// \frac{\partial z^c_i}{x_d}$ where $z^c_i$ is the $c$th component of
// the $i$th test function.
// @f{eqnarray*}{
// R_i &=&
// \left(\frac{(\mathbf{w}_{n+1} -
- // \mathbf{w}_n)_{\text{component\_i}}}{\delta
- // t},(\mathbf{z}_i)_{\text{component\_i}}\right)_K
+ // \mathbf{w}_n)_{\text{component_i}}}{\delta
+ // t},(\mathbf{z}_i)_{\text{component_i}}\right)_K
// \\ &-& \sum_{d=1}^{\text{dim}} \left( \theta \mathbf{F}
- // ({\mathbf{w}^k_{n+1}})_{\text{component\_i},d} + (1-\theta)
- // \mathbf{F} ({\mathbf{w}_{n}})_{\text{component\_i},d} ,
- // \frac{\partial(\mathbf{z}_i)_{\text{component\_i}}} {\partial
+ // ({\mathbf{w}^k_{n+1}})_{\text{component_i},d} + (1-\theta)
+ // \mathbf{F} ({\mathbf{w}_{n}})_{\text{component_i},d} ,
+ // \frac{\partial(\mathbf{z}_i)_{\text{component_i}}} {\partial
// x_d}\right)_K
// \\ &+& \sum_{d=1}^{\text{dim}} h^{\eta} \left( \theta \frac{\partial
- // (\mathbf{w}^k_{n+1})_{\text{component\_i}}}{\partial x_d} + (1-\theta)
- // \frac{\partial (\mathbf{w}_n)_{\text{component\_i}}}{\partial x_d} ,
- // \frac{\partial (\mathbf{z}_i)_{\text{component\_i}}}{\partial x_d}
+ // (\mathbf{w}^k_{n+1})_{\text{component_i}}}{\partial x_d} + (1-\theta)
+ // \frac{\partial (\mathbf{w}_n)_{\text{component_i}}}{\partial x_d} ,
+ // \frac{\partial (\mathbf{z}_i)_{\text{component_i}}}{\partial x_d}
// \right)_K
- // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component\_i}}
- // + (1-\theta)\mathbf{G}({\mathbf{w}_n})_{\text{component\_i}} ,
- // (\mathbf{z}_i)_{\text{component\_i}} \right)_K ,
+ // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component_i}}
+ // + (1-\theta)\mathbf{G}({\mathbf{w}_n})_{\text{component_i}} ,
+ // (\mathbf{z}_i)_{\text{component_i}} \right)_K ,
// @f}
// where integrals are
// understood to be evaluated through summation over quadrature points.
// the Jacobian matrix. For the current case,
//
// F(u) = [ cos(u1 + u2) - 1 + 2*u1 ]
-// [ sin(u1 - u2) + 2*u2 ]
+// [ sin(u1 - u2) + 2*u2 ]
//
// the Jacobian is the 2x2 matrix
//
-// J(u) = [ -sin(u1 + u2) + 2 -sin(u1 + u2)]
+// J(u) = [ -sin(u1 + u2) + 2 -sin(u1 + u2) ]
// [ cos(u1 - u2) -cos(u1 - u2) + 2]
//
// The addition of the +2u_i to the function F does not move the solution