evaluate_tensor_product(
const unsigned int n_derivatives,
const boost::container::small_vector<dealii::ndarray<double, 5, dim>, 10>
- & values_1d,
+ &values_1d,
const unsigned int size_x,
const boost::container::small_vector<std::array<unsigned int, dim1>, 64>
- & indices,
+ &indices,
const std::vector<unsigned int> &index_map,
- std::vector<double> & values,
- std::vector<Tensor<1, dim>> & grads,
- std::vector<Tensor<2, dim>> & grad_grads,
- std::vector<Tensor<3, dim>> & third_derivatives,
- std::vector<Tensor<4, dim>> & fourth_derivatives)
+ std::vector<double> &values,
+ std::vector<Tensor<1, dim>> &grads,
+ std::vector<Tensor<2, dim>> &grad_grads,
+ std::vector<Tensor<3, dim>> &third_derivatives,
+ std::vector<Tensor<4, dim>> &fourth_derivatives)
{
const bool update_values = (values.size() == indices.size() * size_x);
const bool update_grads = (grads.size() == indices.size() * size_x);
const bool update_grad_grads =
- (grad_grads.size() == indices.size() * size_x);
+ (grad_grads.size() == indices.size() * size_x);
const bool update_3rd_derivatives =
- (third_derivatives.size() == indices.size() * size_x);
+ (third_derivatives.size() == indices.size() * size_x);
const bool update_4th_derivatives =
- (fourth_derivatives.size() == indices.size() * size_x);
+ (fourth_derivatives.size() == indices.size() * size_x);
// For values, 1st and 2nd derivatives use a more lengthy code that
// minimizes the number of arithmetic operations and memory accesses
template <int dim, typename PolynomialType>
void
TensorProductPolynomials<dim, PolynomialType>::evaluate(
- const Point<dim> & p,
- std::vector<double> & values,
+ const Point<dim> &p,
+ std::vector<double> &values,
std::vector<Tensor<1, dim>> &grads,
std::vector<Tensor<2, dim>> &grad_grads,
std::vector<Tensor<3, dim>> &third_derivatives,