for(unsigned int j = 0; j < phi.dofs_per_component; ++j)
phi.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j); /*--- Set all dofs to zero ---*/
phi.submit_dof_value(tmp, i); /*--- Set dof i equal to one ---*/
- phi.evaluate(true, true);
+ phi.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points ---*/
for(unsigned int q = 0; q < phi.n_q_points; ++q) {
phi.submit_value(1.0/(gamma*dt)*u_int, q);
phi.submit_gradient(-a22*tensor_product_u_int + a22/Re*grad_u_int, q);
}
- phi.integrate(true, true);
+ phi.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal[i] = phi.get_dof_value(i);
}
for(unsigned int i = 0; i < phi.dofs_per_component; ++i)
for(unsigned int j = 0; j < phi.dofs_per_component; ++j)
phi.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
phi.submit_dof_value(tmp, i);
- phi.evaluate(true, true);
+ phi.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points ---*/
for(unsigned int q = 0; q < phi.n_q_points; ++q) {
phi.submit_value(1.0/((1.0 - gamma)*dt)*u_curr, q);
phi.submit_gradient(-a33*tensor_product_u_curr + a33/Re*grad_u_curr, q);
}
- phi.integrate(true, true);
+ phi.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal[i] = phi.get_dof_value(i);
}
for(unsigned int i = 0; i < phi.dofs_per_component; ++i)
phi_m.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
}
phi_p.submit_dof_value(tmp, i);
- phi_p.evaluate(true, true);
+ phi_p.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
phi_m.submit_dof_value(tmp, i);
- phi_m.evaluate(true, true);
+ phi_m.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points to compute the integral ---*/
for(unsigned int q = 0; q < phi_p.n_q_points; ++q) {
phi_p.submit_normal_derivative(-theta_v*0.5*a22/Re*jump_u_int, q);
phi_m.submit_normal_derivative(-theta_v*0.5*a22/Re*jump_u_int, q);
}
- phi_p.integrate(true, true);
+ phi_p.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal_p[i] = phi_p.get_dof_value(i);
- phi_m.integrate(true, true);
+ phi_m.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal_m[i] = phi_m.get_dof_value(i);
}
for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) {
phi_m.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
}
phi_p.submit_dof_value(tmp, i);
- phi_p.evaluate(true, true);
+ phi_p.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
phi_m.submit_dof_value(tmp, i);
- phi_m.evaluate(true, true);
+ phi_m.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points to compute the integral ---*/
for(unsigned int q = 0; q < phi_p.n_q_points; ++q) {
phi_p.submit_normal_derivative(-theta_v*0.5*a33/Re*jump_u, q);
phi_m.submit_normal_derivative(-theta_v*0.5*a33/Re*jump_u, q);
}
- phi_p.integrate(true, true);
+ phi_p.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal_p[i] = phi_p.get_dof_value(i);
- phi_m.integrate(true, true);
+ phi_m.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal_m[i] = phi_m.get_dof_value(i);
}
for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) {
for(unsigned int j = 0; j < phi.dofs_per_component; ++j)
phi.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
phi.submit_dof_value(tmp, i);
- phi.evaluate(true, true);
+ phi.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points to compute the integral ---*/
for(unsigned int q = 0; q < phi.n_q_points; ++q) {
a22*coef_trasp*tensor_product_u_int*n_plus + a22*lambda*u_int, q);
phi.submit_normal_derivative(-theta_v*a22/Re*u_int, q);
}
- phi.integrate(true, true);
+ phi.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal[i] = phi.get_dof_value(i);
}
for(unsigned int i = 0; i < phi.dofs_per_component; ++i)
for(unsigned int j = 0; j < phi.dofs_per_component; ++j)
phi.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
phi.submit_dof_value(tmp, i);
- phi.evaluate(true, true);
+ phi.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points to compute the integral ---*/
for(unsigned int q = 0; q < phi.n_q_points; ++q) {
a22*0.5*lambda*(u_int - u_int_m), q);
phi.submit_normal_derivative(-theta_v*a22/Re*(u_int - u_int_m), q);
}
- phi.integrate(true, true);
+ phi.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal[i] = phi.get_dof_value(i);
}
for(unsigned int i = 0; i < phi.dofs_per_component; ++i)
for(unsigned int j = 0; j < phi.dofs_per_component; ++j)
phi.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
phi.submit_dof_value(tmp, i);
- phi.evaluate(true, true);
+ phi.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points to compute the integral ---*/
for(unsigned int q = 0; q < phi.n_q_points; ++q) {
a33*coef_trasp*tensor_product_u*n_plus + a33*lambda*u, q);
phi.submit_normal_derivative(-theta_v*a33/Re*u, q);
}
- phi.integrate(true, true);
+ phi.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal[i] = phi.get_dof_value(i);
}
for(unsigned int i = 0; i < phi.dofs_per_component; ++i)
for(unsigned int j = 0; j < phi.dofs_per_component; ++j)
phi.submit_dof_value(Tensor<1, dim, VectorizedArray<Number>>(), j);
phi.submit_dof_value(tmp, i);
- phi.evaluate(true, true);
+ phi.evaluate(EvaluationFlags::values | EvaluationFlags::gradients);
/*--- Loop over quadrature points to compute the integral ---*/
for(unsigned int q = 0; q < phi.n_q_points; ++q) {
a33*0.5*lambda*(u - u_m), q);
phi.submit_normal_derivative(-theta_v*a33/Re*(u - u_m), q);
}
- phi.integrate(true, true);
+ phi.integrate(EvaluationFlags::values | EvaluationFlags::gradients);
diagonal[i] = phi.get_dof_value(i);
}
for(unsigned int i = 0; i < phi.dofs_per_component; ++i)