]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Minor update to the introduction of step-41. 16358/head
authorWolfgang Bangerth <bangerth@colostate.edu>
Sat, 16 Dec 2023 15:54:17 +0000 (08:54 -0700)
committerWolfgang Bangerth <bangerth@colostate.edu>
Sat, 16 Dec 2023 15:54:17 +0000 (08:54 -0700)
examples/step-41/doc/intro.dox

index 5eb82e888ac294eb0bb2939c32771d3f8d2f215d..ee3c69917a494d4f10087ba73afc0e45e848a570 100644 (file)
@@ -54,9 +54,9 @@ The classical formulation of the problem possesses the following form:
  \sigma &= \nabla u & &\quad\text{in } \Omega,\\
  u(\mathbf x) &= 0 & &\quad\text{on }\partial\Omega,\\
 (-\Delta u - f)(u - g) &= 0 & &\quad\text{in } \Omega,\\
- u(\mathbf x) &\geq g(\mathbf x) & &\quad\text{in } \Omega
+ u(\mathbf x) &\geq g(\mathbf x) & &\quad\text{in } \Omega,
 @f}
-with $u\in H^2(\Omega)$.  $u$ is a scalar valued function that denotes the
+where $u$ is a scalar valued function that denotes the
 vertical displacement of the membrane. The first equation is called equilibrium
 condition with a force of areal density $f$. Here, we will consider this force
 to be gravity. The second one is known as Hooke's Law that says that the stresses

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.