]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Use p[index] instead of p(index) for class Point. 16488/head
authorWolfgang Bangerth <bangerth@colostate.edu>
Thu, 18 Jan 2024 00:18:20 +0000 (17:18 -0700)
committerWolfgang Bangerth <bangerth@colostate.edu>
Thu, 18 Jan 2024 01:59:31 +0000 (18:59 -0700)
81 files changed:
examples/step-12/step-12.cc
examples/step-12b/step-12b.cc
examples/step-13/step-13.cc
examples/step-16b/step-16b.cc
examples/step-17/step-17.cc
examples/step-30/step-30.cc
examples/step-32/step-32.cc
examples/step-35/step-35.cc
examples/step-38/step-38.cc
examples/step-4/step-4.cc
examples/step-41/step-41.cc
examples/step-42/step-42.cc
examples/step-49/step-49.cc
examples/step-51/step-51.cc
examples/step-52/step-52.cc
examples/step-53/step-53.cc
examples/step-56/step-56.cc
examples/step-57/step-57.cc
examples/step-7/step-7.cc
examples/step-78/step-78.cc
examples/step-79/step-79.cc
examples/step-8/step-8.cc
examples/step-82/step-82.cc
include/deal.II/base/data_out_base.h
include/deal.II/base/point.h
include/deal.II/base/polynomial_space.h
include/deal.II/base/polynomials_rannacher_turek.h
include/deal.II/base/tensor_product_polynomials.h
include/deal.II/base/tensor_product_polynomials_bubbles.h
include/deal.II/fe/fe_tools.templates.h
include/deal.II/fe/mapping_q_internal.h
include/deal.II/numerics/vector_tools_boundary.templates.h
include/deal.II/particles/particle_accessor.h
source/base/data_out_base.cc
source/base/flow_function.cc
source/base/function_lib.cc
source/base/function_restriction.cc
source/base/geometric_utilities.cc
source/base/mu_parser_internal.cc
source/base/polynomial.cc
source/base/polynomial_space.cc
source/base/polynomials_abf.cc
source/base/polynomials_adini.cc
source/base/polynomials_bdm.cc
source/base/polynomials_nedelec.cc
source/base/polynomials_rannacher_turek.cc
source/base/polynomials_raviart_thomas.cc
source/base/polynomials_rt_bubbles.cc
source/base/qprojector.cc
source/base/quadrature.cc
source/base/tensor_product_polynomials.cc
source/base/tensor_product_polynomials_bubbles.cc
source/fe/fe_dgp_monomial.cc
source/fe/fe_dgq.cc
source/fe/fe_face.cc
source/fe/fe_nedelec.cc
source/fe/fe_p1nc.cc
source/fe/fe_poly_tensor.cc
source/fe/fe_q.cc
source/fe/fe_q_base.cc
source/fe/fe_q_bubbles.cc
source/fe/fe_q_dg0.cc
source/fe/fe_q_hierarchical.cc
source/fe/fe_rannacher_turek.cc
source/fe/mapping.cc
source/fe/mapping_cartesian.cc
source/fe/mapping_q.cc
source/fe/mapping_q_eulerian.cc
source/grid/grid_generator.cc
source/grid/grid_generator_pipe_junction.cc
source/grid/grid_in.cc
source/grid/grid_out.cc
source/grid/grid_tools.cc
source/grid/grid_tools_dof_handlers.cc
source/grid/grid_tools_nontemplates.cc
source/grid/manifold_lib.cc
source/grid/tria_accessor.cc
source/non_matching/quadrature_generator.cc
source/numerics/data_out_rotation.cc
source/numerics/data_out_stack.cc
source/particles/particle.cc

index b365f5b0bdc17c3b1e998cb5ecfbc94a03f503f3..ac35aad42772db8eca5b77b35b384b224c0ea6b3 100644 (file)
@@ -101,7 +101,7 @@ namespace Step12
 
     for (unsigned int i = 0; i < values.size(); ++i)
       {
-        if (points[i](0) < 0.5)
+        if (points[i][0] < 0.5)
           values[i] = 1.;
         else
           values[i] = 0.;
index 9f5d66b513aed6231dca001177c571854b7ace16..4f5c9e6d67b2b225d35c583812de0d81da29a8c1 100644 (file)
@@ -106,7 +106,7 @@ namespace Step12
 
     for (unsigned int i = 0; i < values.size(); ++i)
       {
-        if (points[i](0) < 0.5)
+        if (points[i][0] < 0.5)
           values[i] = 1.;
         else
           values[i] = 0.;
index 805ade33da71de7eb04c63ae532fe4df87b11925..4dcc4731ac538691155f57114b4a1378540ee420 100644 (file)
@@ -1224,9 +1224,9 @@ namespace Step13
   {
     (void)component;
     AssertIndexRange(component, 1);
-    double q = p(0);
+    double q = p[0];
     for (unsigned int i = 1; i < dim; ++i)
-      q += std::sin(10 * p(i) + 5 * p(0) * p(0));
+      q += std::sin(10 * p[i] + 5 * p[0] * p[0]);
     const double exponential = std::exp(q);
     return exponential;
   }
@@ -1248,19 +1248,19 @@ namespace Step13
   {
     (void)component;
     AssertIndexRange(component, 1);
-    double q = p(0);
+    double q = p[0];
     for (unsigned int i = 1; i < dim; ++i)
-      q += std::sin(10 * p(i) + 5 * p(0) * p(0));
+      q += std::sin(10 * p[i] + 5 * p[0] * p[0]);
     const double u  = std::exp(q);
     double       t1 = 1, t2 = 0, t3 = 0;
     for (unsigned int i = 1; i < dim; ++i)
       {
-        t1 += std::cos(10 * p(i) + 5 * p(0) * p(0)) * 10 * p(0);
-        t2 += 10 * std::cos(10 * p(i) + 5 * p(0) * p(0)) -
-              100 * std::sin(10 * p(i) + 5 * p(0) * p(0)) * p(0) * p(0);
-        t3 += 100 * std::cos(10 * p(i) + 5 * p(0) * p(0)) *
-                std::cos(10 * p(i) + 5 * p(0) * p(0)) -
-              100 * std::sin(10 * p(i) + 5 * p(0) * p(0));
+        t1 += std::cos(10 * p[i] + 5 * p[0] * p[0]) * 10 * p[0];
+        t2 += 10 * std::cos(10 * p[i] + 5 * p[0] * p[0]) -
+              100 * std::sin(10 * p[i] + 5 * p[0] * p[0]) * p[0] * p[0];
+        t3 += 100 * std::cos(10 * p[i] + 5 * p[0] * p[0]) *
+                std::cos(10 * p[i] + 5 * p[0] * p[0]) -
+              100 * std::sin(10 * p[i] + 5 * p[0] * p[0]);
       };
     t1 = t1 * t1;
 
index 858a5391200376dcfd0b59f148cb2aaeebef6949..2755514570416384245e3e129c920b59c01e2a7c 100644 (file)
@@ -146,7 +146,7 @@ namespace Step16
                                MeshWorker::IntegrationInfo<dim> &info) const
   {
     AssertDimension(dinfo.n_matrices(), 1);
-    const double coefficient = (dinfo.cell->center()(0) > 0.) ? .1 : 1.;
+    const double coefficient = (dinfo.cell->center()[0] > 0.) ? .1 : 1.;
 
     LocalIntegrators::Laplace::cell_matrix(dinfo.matrix(0, false).matrix,
                                            info.fe_values(0),
index ed620ba785650449322d1b71e9a3d0c05348c33f..8c549b6afe7be8081e442feb805a3b70bcff79dc 100644 (file)
@@ -187,8 +187,8 @@ namespace Step17
       Assert(dim >= 2, ExcInternalError());
 
       Point<dim> point_1, point_2;
-      point_1(0) = 0.5;
-      point_2(0) = -0.5;
+      point_1[0] = 0.5;
+      point_2[0] = -0.5;
 
       if (((p - point_1).norm_square() < 0.2 * 0.2) ||
           ((p - point_2).norm_square() < 0.2 * 0.2))
index d364147c22853c3b5c1a61ee2ba725862ffbb223..7cb4b79a942baba1c846fd6352b16b9b92c19082 100644 (file)
@@ -81,7 +81,7 @@ namespace Step30
 
       for (unsigned int i = 0; i < values.size(); ++i)
         {
-          if (points[i](0) < 0.5)
+          if (points[i][0] < 0.5)
             values[i] = 1.;
           else
             values[i] = 0.;
@@ -111,15 +111,15 @@ namespace Step30
 
       for (unsigned int i = 0; i < points.size(); ++i)
         {
-          if (points[i](0) > 0)
+          if (points[i][0] > 0)
             {
-              values[i](0) = -points[i](1);
-              values[i](1) = points[i](0);
+              values[i][0] = -points[i][1];
+              values[i][1] = points[i][0];
             }
           else
             {
               values[i]    = Point<dim>();
-              values[i](0) = -points[i](1);
+              values[i][0] = -points[i][1];
             }
         }
     }
@@ -873,7 +873,7 @@ namespace Step30
           double                  sum_of_average_jumps = 0.;
           for (unsigned int i = 0; i < dim; ++i)
             {
-              average_jumps[i] = jump(i) / area(i);
+              average_jumps[i] = jump[i] / area[i];
               sum_of_average_jumps += average_jumps[i];
             }
 
@@ -946,10 +946,9 @@ namespace Step30
           {
             // Create the rectangular domain.
             Point<dim> p1, p2;
-            p1(0) = 0;
-            p1(0) = -1;
+            p1[0] = -1.;
             for (unsigned int i = 0; i < dim; ++i)
-              p2(i) = 1.;
+              p2[i] = 1.;
             // Adjust the number of cells in different directions to obtain
             // completely isotropic cells for the original mesh.
             std::vector<unsigned int> repetitions(dim, 1);
index 32aeccbaa95efd5b20ad8cb0ffbc811db521658b..d5be30c8b6d62305dbe02f54b7325735170123bf 100644 (file)
@@ -169,8 +169,8 @@ namespace Step32
 
       const double s = (r - R0) / h;
       const double q =
-        (dim == 3) ? std::max(0.0, cos(numbers::PI * abs(p(2) / R1))) : 1.0;
-      const double phi = std::atan2(p(0), p(1));
+        (dim == 3) ? std::max(0.0, cos(numbers::PI * abs(p[2] / R1))) : 1.0;
+      const double phi = std::atan2(p[0], p[1]);
       const double tau = s + 0.2 * s * (1 - s) * std::sin(6 * phi) * q;
 
       return T0 * (1.0 - tau) + T1 * tau;
index 3b2a8b6a6ba6af2ee0f7897a6dab1a960dd3fe3d..5b2e4755bc49f29bfafb511011196b2e4e223a4b 100644 (file)
@@ -364,7 +364,7 @@ namespace Step35
         {
           const double Um = 1.5;
           const double H  = 4.1;
-          return 4. * Um * p(1) * (H - p(1)) / (H * H);
+          return 4. * Um * p[1] * (H - p[1]) / (H * H);
         }
       else
         return 0.;
@@ -398,7 +398,7 @@ namespace Step35
     {
       (void)component;
       AssertIndexRange(component, 1);
-      return 25. - p(0);
+      return 25. - p[0];
     }
 
     template <int dim>
@@ -1156,7 +1156,7 @@ namespace Step35
       {
         scratch.fe_val.get_function_values(u_star[d], scratch.u_star_tmp);
         for (unsigned int q = 0; q < scratch.nqp; ++q)
-          scratch.u_star_local[q](d) = scratch.u_star_tmp[q];
+          scratch.u_star_local[q][d] = scratch.u_star_tmp[q];
       }
 
     for (unsigned int d = 0; d < dim; ++d)
index 20905ef4aa48f26a87661ba9ed9e4896b692ada7..7e038b0b8262b24ebda357c023090be010380e4d 100644 (file)
@@ -153,7 +153,7 @@ namespace Step38
   template <>
   double Solution<2>::value(const Point<2> &p, const unsigned int) const
   {
-    return (-2. * p(0) * p(1));
+    return (-2. * p[0] * p[1]);
   }
 
 
@@ -162,8 +162,8 @@ namespace Step38
                                      const unsigned int) const
   {
     Tensor<1, 2> return_value;
-    return_value[0] = -2. * p(1) * (1 - 2. * p(0) * p(0));
-    return_value[1] = -2. * p(0) * (1 - 2. * p(1) * p(1));
+    return_value[0] = -2. * p[1] * (1 - 2. * p[0] * p[0]);
+    return_value[1] = -2. * p[0] * (1 - 2. * p[1] * p[1]);
 
     return return_value;
   }
@@ -172,8 +172,8 @@ namespace Step38
   template <>
   double Solution<3>::value(const Point<3> &p, const unsigned int) const
   {
-    return (std::sin(numbers::PI * p(0)) * std::cos(numbers::PI * p(1)) *
-            exp(p(2)));
+    return (std::sin(numbers::PI * p[0]) * std::cos(numbers::PI * p[1]) *
+            exp(p[2]));
   }
 
 
@@ -185,9 +185,9 @@ namespace Step38
 
     Tensor<1, 3> return_value;
 
-    return_value[0] = PI * cos(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
-    return_value[1] = -PI * sin(PI * p(0)) * sin(PI * p(1)) * exp(p(2));
-    return_value[2] = sin(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
+    return_value[0] = PI * cos(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
+    return_value[1] = -PI * sin(PI * p[0]) * sin(PI * p[1]) * exp(p[2]);
+    return_value[2] = sin(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
 
     return return_value;
   }
@@ -206,7 +206,7 @@ namespace Step38
   double RightHandSide<2>::value(const Point<2> &p,
                                  const unsigned int /*component*/) const
   {
-    return (-8. * p(0) * p(1));
+    return (-8. * p[0] * p[1]);
   }
 
 
@@ -218,23 +218,23 @@ namespace Step38
 
     Tensor<2, 3> hessian;
 
-    hessian[0][0] = -PI * PI * sin(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
-    hessian[1][1] = -PI * PI * sin(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
-    hessian[2][2] = sin(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
+    hessian[0][0] = -PI * PI * sin(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
+    hessian[1][1] = -PI * PI * sin(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
+    hessian[2][2] = sin(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
 
-    hessian[0][1] = -PI * PI * cos(PI * p(0)) * sin(PI * p(1)) * exp(p(2));
-    hessian[1][0] = -PI * PI * cos(PI * p(0)) * sin(PI * p(1)) * exp(p(2));
+    hessian[0][1] = -PI * PI * cos(PI * p[0]) * sin(PI * p[1]) * exp(p[2]);
+    hessian[1][0] = -PI * PI * cos(PI * p[0]) * sin(PI * p[1]) * exp(p[2]);
 
-    hessian[0][2] = PI * cos(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
-    hessian[2][0] = PI * cos(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
+    hessian[0][2] = PI * cos(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
+    hessian[2][0] = PI * cos(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
 
-    hessian[1][2] = -PI * sin(PI * p(0)) * sin(PI * p(1)) * exp(p(2));
-    hessian[2][1] = -PI * sin(PI * p(0)) * sin(PI * p(1)) * exp(p(2));
+    hessian[1][2] = -PI * sin(PI * p[0]) * sin(PI * p[1]) * exp(p[2]);
+    hessian[2][1] = -PI * sin(PI * p[0]) * sin(PI * p[1]) * exp(p[2]);
 
     Tensor<1, 3> gradient;
-    gradient[0] = PI * cos(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
-    gradient[1] = -PI * sin(PI * p(0)) * sin(PI * p(1)) * exp(p(2));
-    gradient[2] = sin(PI * p(0)) * cos(PI * p(1)) * exp(p(2));
+    gradient[0] = PI * cos(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
+    gradient[1] = -PI * sin(PI * p[0]) * sin(PI * p[1]) * exp(p[2]);
+    gradient[2] = sin(PI * p[0]) * cos(PI * p[1]) * exp(p[2]);
 
     Point<3> normal = p;
     normal /= p.norm();
index cdfbcd846b93bff4bc36a994a41971681875005f..e24dd1f59349e03429c87fdbe8c030ae7a392c61 100644 (file)
@@ -190,7 +190,7 @@ double RightHandSide<dim>::value(const Point<dim> &p,
 {
   double return_value = 0.0;
   for (unsigned int i = 0; i < dim; ++i)
-    return_value += 4.0 * std::pow(p(i), 4.0);
+    return_value += 4.0 * std::pow(p[i], 4.0);
 
   return return_value;
 }
index d3416259cf30ca959727df50c83497067d672b4c..6d61c69044d635312ebc4d91866c56fc07e8b848 100644 (file)
@@ -157,11 +157,11 @@ namespace Step41
       (void)component;
       Assert(component == 0, ExcIndexRange(component, 0, 1));
 
-      if (p(0) < -0.5)
+      if (p[0] < -0.5)
         return -0.2;
-      else if (p(0) >= -0.5 && p(0) < 0.0)
+      else if (p[0] >= -0.5 && p[0] < 0.0)
         return -0.4;
-      else if (p(0) >= 0.0 && p(0) < 0.5)
+      else if (p[0] >= 0.0 && p[0] < 0.5)
         return -0.6;
       else
         return -0.8;
index 585f72a243c355d048fab4177f19411fa0aa9f40..4b5c465f33e1953b7c7592f8b9c2e84553641f44 100644 (file)
@@ -372,14 +372,14 @@ namespace Step42
                                       const unsigned int component) const
     {
       if (component == 0)
-        return p(0);
+        return p[0];
       else if (component == 1)
-        return p(1);
+        return p[1];
       else if (component == 2)
         {
-          if ((p(0) - 0.5) * (p(0) - 0.5) + (p(1) - 0.5) * (p(1) - 0.5) < 0.36)
-            return (-std::sqrt(0.36 - (p(0) - 0.5) * (p(0) - 0.5) -
-                               (p(1) - 0.5) * (p(1) - 0.5)) +
+          if ((p[0] - 0.5) * (p[0] - 0.5) + (p[1] - 0.5) * (p[1] - 0.5) < 0.36)
+            return (-std::sqrt(0.36 - (p[0] - 0.5) * (p[0] - 0.5) -
+                               (p[1] - 0.5) * (p[1] - 0.5)) +
                     z_surface + 0.59);
           else
             return 1000;
@@ -550,13 +550,13 @@ namespace Step42
                                        const unsigned int component) const
     {
       if (component == 0)
-        return p(0);
+        return p[0];
       if (component == 1)
-        return p(1);
+        return p[1];
       else if (component == 2)
         {
-          if (p(0) >= 0.0 && p(0) <= 1.0 && p(1) >= 0.0 && p(1) <= 1.0)
-            return z_surface + 0.999 - input_obstacle.get_value(p(0), p(1));
+          if (p[0] >= 0.0 && p[0] <= 1.0 && p[1] >= 0.0 && p[1] <= 1.0)
+            return z_surface + 0.999 - input_obstacle.get_value(p[0], p[1]);
         }
 
       Assert(false, ExcNotImplemented());
@@ -881,7 +881,7 @@ namespace Step42
   // indicator one.
   Point<3> rotate_half_sphere(const Point<3> &in)
   {
-    return {in(2), in(1), -in(0)};
+    return {in[2], in[1], -in[0]};
   }
 
   template <int dim>
@@ -1267,7 +1267,7 @@ namespace Step42
                         obstacle->value(this_support_point, 2);
                       const double solution_here = solution(index_z);
                       const double undeformed_gap =
-                        obstacle_value - this_support_point(2);
+                        obstacle_value - this_support_point[2];
 
                       const double c = 100.0 * e_modulus;
                       if ((lambda(index_z) /
index e2cb21552a7b03e7e6c37a3570c53514149bf316..db30d67822e93d6de48dfb76dd28ac3ee59699b6 100644 (file)
@@ -209,8 +209,8 @@ void grid_3()
       for (const auto i : cell->vertex_indices())
         {
           Point<2> &v = cell->vertex(i);
-          if (std::abs(v(1) - 1.0) < 1e-5)
-            v(1) += 0.5;
+          if (std::abs(v[1] - 1.0) < 1e-5)
+            v[1] += 0.5;
         }
     }
 
@@ -315,7 +315,7 @@ struct Grid6Func
 
   Point<2> operator()(const Point<2> &in) const
   {
-    return {in(0), trans(in(1))};
+    return {in[0], trans(in[1])};
   }
 };
 
index a631c8c4439aa6ffdaf21c2ff29c54e9f0d6d43a..2dbdf85b144ec2cbc19d33c1ff53db9409ca3fb8 100644 (file)
@@ -1344,8 +1344,8 @@ namespace Step51
     for (const auto &cell : triangulation.cell_iterators())
       for (const auto &face : cell->face_iterators())
         if (face->at_boundary())
-          if ((std::fabs(face->center()(0) - (-1)) < 1e-12) ||
-              (std::fabs(face->center()(1) - (-1)) < 1e-12))
+          if ((std::fabs(face->center()[0] - (-1)) < 1e-12) ||
+              (std::fabs(face->center()[1] - (-1)) < 1e-12))
             face->set_boundary_id(1);
   }
 
index 94998d7d50e5995e79b22acb2d949d5fca46bb15..96d247d29bebc7f68ca23c502b976a5e12249ae2 100644 (file)
@@ -260,7 +260,7 @@ namespace Step52
     const double intensity = 10.;
     const double frequency = numbers::PI / 10.;
     const double b         = 5.;
-    const double x         = point(0);
+    const double x         = point[0];
 
     return intensity *
            (frequency * std::cos(frequency * time) * (b * x - x * x) +
index d24da54d1386c4110e9bf8dd5190b5c638295625..163fbfe2f56fa1695a1a99adb0529312efa0bd83 100644 (file)
@@ -259,11 +259,11 @@ namespace Step53
   {
     const double b   = std::sqrt(R * R * (1 - ellipticity * ellipticity));
     const double ep  = std::sqrt((R * R - b * b) / (b * b));
-    const double p   = std::sqrt(x(0) * x(0) + x(1) * x(1));
-    const double th  = std::atan2(R * x(2), b * p);
-    const double phi = std::atan2(x(1), x(0));
+    const double p   = std::sqrt(x[0] * x[0] + x[1] * x[1]);
+    const double th  = std::atan2(R * x[2], b * p);
+    const double phi = std::atan2(x[1], x[0]);
     const double theta =
-      std::atan2(x(2) + ep * ep * b * Utilities::fixed_power<3>(std::sin(th)),
+      std::atan2(x[2] + ep * ep * b * Utilities::fixed_power<3>(std::sin(th)),
                  (p - (ellipticity * ellipticity * R *
                        Utilities::fixed_power<3>(std::cos(th)))));
     const double R_bar =
index 188f297e8d881a0eb48b258c21d7c66af4001fc3..2ae71956ef7c25e399669a0378f362d49edc8867 100644 (file)
@@ -116,8 +116,8 @@ namespace Step56
     Assert(component <= 2 + 1, ExcIndexRange(component, 0, 2 + 1));
 
     using numbers::PI;
-    const double x = p(0);
-    const double y = p(1);
+    const double x = p[0];
+    const double y = p[1];
 
     if (component == 0)
       return sin(PI * x);
@@ -136,9 +136,9 @@ namespace Step56
     Assert(component <= 3 + 1, ExcIndexRange(component, 0, 3 + 1));
 
     using numbers::PI;
-    const double x = p(0);
-    const double y = p(1);
-    const double z = p(2);
+    const double x = p[0];
+    const double y = p[1];
+    const double z = p[2];
 
     if (component == 0)
       return 2.0 * sin(PI * x);
@@ -160,8 +160,8 @@ namespace Step56
     Assert(component <= 2, ExcIndexRange(component, 0, 2 + 1));
 
     using numbers::PI;
-    const double x = p(0);
-    const double y = p(1);
+    const double x = p[0];
+    const double y = p[1];
 
     Tensor<1, 2> return_value;
     if (component == 0)
@@ -190,9 +190,9 @@ namespace Step56
     Assert(component <= 3, ExcIndexRange(component, 0, 3 + 1));
 
     using numbers::PI;
-    const double x = p(0);
-    const double y = p(1);
-    const double z = p(2);
+    const double x = p[0];
+    const double y = p[1];
+    const double z = p[2];
 
     Tensor<1, 3> return_value;
     if (component == 0)
@@ -243,8 +243,8 @@ namespace Step56
     Assert(component <= 2, ExcIndexRange(component, 0, 2 + 1));
 
     using numbers::PI;
-    double x = p(0);
-    double y = p(1);
+    const double x = p[0];
+    const double y = p[1];
     if (component == 0)
       return PI * PI * sin(PI * x) + PI * cos(PI * x) * cos(PI * y);
     if (component == 1)
@@ -262,9 +262,9 @@ namespace Step56
     Assert(component <= 3, ExcIndexRange(component, 0, 3 + 1));
 
     using numbers::PI;
-    double x = p(0);
-    double y = p(1);
-    double z = p(2);
+    const double x = p[0];
+    const double y = p[1];
+    const double z = p[2];
     if (component == 0)
       return 2 * PI * PI * sin(PI * x) +
              PI * cos(PI * x) * cos(PI * y) * sin(PI * z);
index e154a178a51fe2ebc0b924ec0c2b2889dae0e49b..58086ee94dddabcdd9331f451cb08937cb9c2220 100644 (file)
@@ -788,18 +788,18 @@ namespace Step57
     f << "# y u_x u_y" << std::endl;
 
     Point<dim> p;
-    p(0) = 0.5;
-    p(1) = 0.5;
+    p[0] = 0.5;
+    p[1] = 0.5;
 
     f << std::scientific;
 
     for (unsigned int i = 0; i <= 100; ++i)
       {
-        p(dim - 1) = i / 100.0;
+        p[dim - 1] = i / 100.0;
 
         Vector<double> tmp_vector(dim + 1);
         VectorTools::point_value(dof_handler, present_solution, p, tmp_vector);
-        f << p(dim - 1);
+        f << p[dim - 1];
 
         for (int j = 0; j < dim; ++j)
           f << ' ' << tmp_vector(j);
index 55cf0498a7e01cb44f2cd76649b1b0369b32e8df..0e485cf8dd95c7350a2a291e4a28a8f5b3f0ab99 100644 (file)
@@ -967,8 +967,8 @@ namespace Step7
               for (const auto &face : cell->face_iterators())
                 {
                   const auto center = face->center();
-                  if ((std::fabs(center(0) - (-1.0)) < 1e-12) ||
-                      (std::fabs(center(1) - (-1.0)) < 1e-12))
+                  if ((std::fabs(center[0] - (-1.0)) < 1e-12) ||
+                      (std::fabs(center[1] - (-1.0)) < 1e-12))
                     face->set_boundary_id(1);
                 }
           }
index efd6b6f0a66cc9cca62a6c294e31d55bb1bc8d97..383d1433cfec6f5487e0275dab00080d674f8151 100644 (file)
@@ -101,7 +101,7 @@ namespace BlackScholesSolver
   double Solution<dim>::value(const Point<dim>  &p,
                               const unsigned int component) const
   {
-    return -Utilities::fixed_power<2, double>(p(component)) -
+    return -Utilities::fixed_power<2, double>(p[component]) -
            Utilities::fixed_power<2, double>(this->get_time()) + 6;
   }
 
@@ -110,7 +110,7 @@ namespace BlackScholesSolver
   Tensor<1, dim> Solution<dim>::gradient(const Point<dim>  &p,
                                          const unsigned int component) const
   {
-    return Point<dim>(-2 * p(component));
+    return Point<dim>(-2 * p[component]);
   }
 
 
@@ -148,9 +148,9 @@ namespace BlackScholesSolver
                                        const unsigned int component) const
   {
 #ifdef MMS
-    return -Utilities::fixed_power<2, double>(p(component)) + 6;
+    return -Utilities::fixed_power<2, double>(p[component]) + 6;
 #else
-    return std::max(p(component) - strike_price, 0.);
+    return std::max(p[component] - strike_price, 0.);
 #endif
   }
 
@@ -208,10 +208,10 @@ namespace BlackScholesSolver
                                          const unsigned int component) const
   {
 #ifdef MMS
-    return -Utilities::fixed_power<2, double>(p(component)) -
+    return -Utilities::fixed_power<2, double>(p[component]) -
            Utilities::fixed_power<2, double>(this->get_time()) + 6;
 #else
-    return (p(component) - strike_price) *
+    return (p[component] - strike_price) *
            exp((-interest_rate) * (this->get_time()));
 #endif
   }
@@ -248,10 +248,10 @@ namespace BlackScholesSolver
   {
 #ifdef MMS
     return 2 * (this->get_time()) -
-           Utilities::fixed_power<2, double>(asset_volatility * p(component)) -
-           2 * interest_rate * Utilities::fixed_power<2, double>(p(component)) -
+           Utilities::fixed_power<2, double>(asset_volatility * p[component]) -
+           2 * interest_rate * Utilities::fixed_power<2, double>(p[component]) -
            interest_rate *
-             (-Utilities::fixed_power<2, double>(p(component)) -
+             (-Utilities::fixed_power<2, double>(p[component]) -
               Utilities::fixed_power<2, double>(this->get_time()) + 6);
 #else
     (void)p;
index 7d4a69c333161f9d8e9d5d2eb334a327fb76fc8c..b014fec61c7052682009b80d7c87a4f5e24b2978 100644 (file)
@@ -332,9 +332,9 @@ namespace SAND
             if (face->at_boundary())
               {
                 const auto center = face->center();
-                if (std::fabs(center(1) - 1) < 1e-12)
+                if (std::fabs(center[1] - 1) < 1e-12)
                   {
-                    if ((std::fabs(center(0) - 3) < .3))
+                    if ((std::fabs(center[0] - 3) < .3))
                       face->set_boundary_id(BoundaryIds::down_force);
                     else
                       face->set_boundary_id(BoundaryIds::no_force);
@@ -374,14 +374,14 @@ namespace SAND
                 // boundary, and if it is whether one of its
                 // vertices might be the bottom left or bottom
                 // right vertex:
-                if (std::fabs(center(1) - 0) < 1e-12)
+                if (std::fabs(center[1] - 0) < 1e-12)
                   {
                     for (const auto vertex_number : cell->vertex_indices())
                       {
                         const auto vert = cell->vertex(vertex_number);
 
-                        if (std::fabs(vert(0) - 0) < 1e-12 &&
-                            std::fabs(vert(1) - 0) < 1e-12)
+                        if (std::fabs(vert[0] - 0) < 1e-12 &&
+                            std::fabs(vert[1] - 0) < 1e-12)
                           {
                             types::global_dof_index x_displacement =
                               cell->vertex_dof_index(vertex_number, 0);
@@ -398,8 +398,8 @@ namespace SAND
                             boundary_values[y_displacement_multiplier] = 0;
                           }
 
-                        else if (std::fabs(vert(0) - 6) < 1e-12 &&
-                                 std::fabs(vert(1) - 0) < 1e-12)
+                        else if (std::fabs(vert[0] - 6) < 1e-12 &&
+                                 std::fabs(vert[1] - 0) < 1e-12)
                           {
                             types::global_dof_index y_displacement =
                               cell->vertex_dof_index(vertex_number, 1);
index cb3d06b5fac91176d1995534770312cc020528de..d7b109a80a934a0182bc73555065558d578a6847 100644 (file)
@@ -150,8 +150,8 @@ namespace Step8
     // these areas. Note that upon construction of the Point objects, all
     // components are set to zero.
     Point<dim> point_1, point_2;
-    point_1(0) = 0.5;
-    point_2(0) = -0.5;
+    point_1[0] = 0.5;
+    point_2[0] = -0.5;
 
     for (unsigned int point_n = 0; point_n < points.size(); ++point_n)
       {
index e05666259a24fd9d6b6875c98b529a7e4470ec9a..7b663d03bf2000419863237ae1ec25150bbb46b9 100644 (file)
@@ -169,28 +169,28 @@ namespace Step82
 
     if (dim == 2)
       {
-        return_value = 24.0 * Utilities::fixed_power<2>(p(1) * (1.0 - p(1))) +
-                       +24.0 * Utilities::fixed_power<2>(p(0) * (1.0 - p(0))) +
-                       2.0 * (2.0 - 12.0 * p(0) + 12.0 * p(0) * p(0)) *
-                         (2.0 - 12.0 * p(1) + 12.0 * p(1) * p(1));
+        return_value = 24.0 * Utilities::fixed_power<2>(p[1] * (1.0 - p[1])) +
+                       +24.0 * Utilities::fixed_power<2>(p[0] * (1.0 - p[0])) +
+                       2.0 * (2.0 - 12.0 * p[0] + 12.0 * p[0] * p[0]) *
+                         (2.0 - 12.0 * p[1] + 12.0 * p[1] * p[1]);
       }
     else if (dim == 3)
       {
-        return_value = 24.0 * Utilities::fixed_power<2>(p(1) * (1.0 - p(1)) *
-                                                        p(2) * (1.0 - p(2))) +
-                       24.0 * Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) *
-                                                        p(2) * (1.0 - p(2))) +
-                       24.0 * Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) *
-                                                        p(1) * (1.0 - p(1))) +
-                       2.0 * (2.0 - 12.0 * p(0) + 12.0 * p(0) * p(0)) *
-                         (2.0 - 12.0 * p(1) + 12.0 * p(1) * p(1)) *
-                         Utilities::fixed_power<2>(p(2) * (1.0 - p(2))) +
-                       2.0 * (2.0 - 12.0 * p(0) + 12.0 * p(0) * p(0)) *
-                         (2.0 - 12.0 * p(2) + 12.0 * p(2) * p(2)) *
-                         Utilities::fixed_power<2>(p(1) * (1.0 - p(1))) +
-                       2.0 * (2.0 - 12.0 * p(1) + 12.0 * p(1) * p(1)) *
-                         (2.0 - 12.0 * p(2) + 12.0 * p(2) * p(2)) *
-                         Utilities::fixed_power<2>(p(0) * (1.0 - p(0)));
+        return_value = 24.0 * Utilities::fixed_power<2>(p[1] * (1.0 - p[1]) *
+                                                        p[2] * (1.0 - p[2])) +
+                       24.0 * Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) *
+                                                        p[2] * (1.0 - p[2])) +
+                       24.0 * Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) *
+                                                        p[1] * (1.0 - p[1])) +
+                       2.0 * (2.0 - 12.0 * p[0] + 12.0 * p[0] * p[0]) *
+                         (2.0 - 12.0 * p[1] + 12.0 * p[1] * p[1]) *
+                         Utilities::fixed_power<2>(p[2] * (1.0 - p[2])) +
+                       2.0 * (2.0 - 12.0 * p[0] + 12.0 * p[0] * p[0]) *
+                         (2.0 - 12.0 * p[2] + 12.0 * p[2] * p[2]) *
+                         Utilities::fixed_power<2>(p[1] * (1.0 - p[1])) +
+                       2.0 * (2.0 - 12.0 * p[1] + 12.0 * p[1] * p[1]) *
+                         (2.0 - 12.0 * p[2] + 12.0 * p[2] * p[2]) *
+                         Utilities::fixed_power<2>(p[0] * (1.0 - p[0]));
       }
     else
       Assert(false, ExcNotImplemented());
@@ -233,12 +233,12 @@ namespace Step82
     if (dim == 2)
       {
         return_value =
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) * p(1) * (1.0 - p(1)));
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) * p[1] * (1.0 - p[1]));
       }
     else if (dim == 3)
       {
         return_value = Utilities::fixed_power<2>(
-          p(0) * (1.0 - p(0)) * p(1) * (1.0 - p(1)) * p(2) * (1.0 - p(2)));
+          p[0] * (1.0 - p[0]) * p[1] * (1.0 - p[1]) * p[2] * (1.0 - p[2]));
       }
     else
       Assert(false, ExcNotImplemented());
@@ -258,28 +258,28 @@ namespace Step82
     if (dim == 2)
       {
         return_gradient[0] =
-          (2.0 * p(0) - 6.0 * Utilities::fixed_power<2>(p(0)) +
-           4.0 * Utilities::fixed_power<3>(p(0))) *
-          Utilities::fixed_power<2>(p(1) * (1.0 - p(1)));
+          (2.0 * p[0] - 6.0 * Utilities::fixed_power<2>(p[0]) +
+           4.0 * Utilities::fixed_power<3>(p[0])) *
+          Utilities::fixed_power<2>(p[1] * (1.0 - p[1]));
         return_gradient[1] =
-          (2.0 * p(1) - 6.0 * Utilities::fixed_power<2>(p(1)) +
-           4.0 * Utilities::fixed_power<3>(p(1))) *
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)));
+          (2.0 * p[1] - 6.0 * Utilities::fixed_power<2>(p[1]) +
+           4.0 * Utilities::fixed_power<3>(p[1])) *
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]));
       }
     else if (dim == 3)
       {
         return_gradient[0] =
-          (2.0 * p(0) - 6.0 * Utilities::fixed_power<2>(p(0)) +
-           4.0 * Utilities::fixed_power<3>(p(0))) *
-          Utilities::fixed_power<2>(p(1) * (1.0 - p(1)) * p(2) * (1.0 - p(2)));
+          (2.0 * p[0] - 6.0 * Utilities::fixed_power<2>(p[0]) +
+           4.0 * Utilities::fixed_power<3>(p[0])) *
+          Utilities::fixed_power<2>(p[1] * (1.0 - p[1]) * p[2] * (1.0 - p[2]));
         return_gradient[1] =
-          (2.0 * p(1) - 6.0 * Utilities::fixed_power<2>(p(1)) +
-           4.0 * Utilities::fixed_power<3>(p(1))) *
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) * p(2) * (1.0 - p(2)));
+          (2.0 * p[1] - 6.0 * Utilities::fixed_power<2>(p[1]) +
+           4.0 * Utilities::fixed_power<3>(p[1])) *
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) * p[2] * (1.0 - p[2]));
         return_gradient[2] =
-          (2.0 * p(2) - 6.0 * Utilities::fixed_power<2>(p(2)) +
-           4.0 * Utilities::fixed_power<3>(p(2))) *
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) * p(1) * (1.0 - p(1)));
+          (2.0 * p[2] - 6.0 * Utilities::fixed_power<2>(p[2]) +
+           4.0 * Utilities::fixed_power<3>(p[2])) *
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) * p[1] * (1.0 - p[1]));
       }
     else
       Assert(false, ExcNotImplemented());
@@ -298,45 +298,45 @@ namespace Step82
 
     if (dim == 2)
       {
-        return_hessian[0][0] = (2.0 - 12.0 * p(0) + 12.0 * p(0) * p(0)) *
-                               Utilities::fixed_power<2>(p(1) * (1.0 - p(1)));
+        return_hessian[0][0] = (2.0 - 12.0 * p[0] + 12.0 * p[0] * p[0]) *
+                               Utilities::fixed_power<2>(p[1] * (1.0 - p[1]));
         return_hessian[0][1] =
-          (2.0 * p(0) - 6.0 * Utilities::fixed_power<2>(p(0)) +
-           4.0 * Utilities::fixed_power<3>(p(0))) *
-          (2.0 * p(1) - 6.0 * Utilities::fixed_power<2>(p(1)) +
-           4.0 * Utilities::fixed_power<3>(p(1)));
-        return_hessian[1][1] = (2.0 - 12.0 * p(1) + 12.0 * p(1) * p(1)) *
-                               Utilities::fixed_power<2>(p(0) * (1.0 - p(0)));
+          (2.0 * p[0] - 6.0 * Utilities::fixed_power<2>(p[0]) +
+           4.0 * Utilities::fixed_power<3>(p[0])) *
+          (2.0 * p[1] - 6.0 * Utilities::fixed_power<2>(p[1]) +
+           4.0 * Utilities::fixed_power<3>(p[1]));
+        return_hessian[1][1] = (2.0 - 12.0 * p[1] + 12.0 * p[1] * p[1]) *
+                               Utilities::fixed_power<2>(p[0] * (1.0 - p[0]));
       }
     else if (dim == 3)
       {
         return_hessian[0][0] =
-          (2.0 - 12.0 * p(0) + 12.0 * p(0) * p(0)) *
-          Utilities::fixed_power<2>(p(1) * (1.0 - p(1)) * p(2) * (1.0 - p(2)));
+          (2.0 - 12.0 * p[0] + 12.0 * p[0] * p[0]) *
+          Utilities::fixed_power<2>(p[1] * (1.0 - p[1]) * p[2] * (1.0 - p[2]));
         return_hessian[0][1] =
-          (2.0 * p(0) - 6.0 * Utilities::fixed_power<2>(p(0)) +
-           4.0 * Utilities::fixed_power<3>(p(0))) *
-          (2.0 * p(1) - 6.0 * Utilities::fixed_power<2>(p(1)) +
-           4.0 * Utilities::fixed_power<3>(p(1))) *
-          Utilities::fixed_power<2>(p(2) * (1.0 - p(2)));
+          (2.0 * p[0] - 6.0 * Utilities::fixed_power<2>(p[0]) +
+           4.0 * Utilities::fixed_power<3>(p[0])) *
+          (2.0 * p[1] - 6.0 * Utilities::fixed_power<2>(p[1]) +
+           4.0 * Utilities::fixed_power<3>(p[1])) *
+          Utilities::fixed_power<2>(p[2] * (1.0 - p[2]));
         return_hessian[0][2] =
-          (2.0 * p(0) - 6.0 * Utilities::fixed_power<2>(p(0)) +
-           4.0 * Utilities::fixed_power<3>(p(0))) *
-          (2.0 * p(2) - 6.0 * Utilities::fixed_power<2>(p(2)) +
-           4.0 * Utilities::fixed_power<3>(p(2))) *
-          Utilities::fixed_power<2>(p(1) * (1.0 - p(1)));
+          (2.0 * p[0] - 6.0 * Utilities::fixed_power<2>(p[0]) +
+           4.0 * Utilities::fixed_power<3>(p[0])) *
+          (2.0 * p[2] - 6.0 * Utilities::fixed_power<2>(p[2]) +
+           4.0 * Utilities::fixed_power<3>(p[2])) *
+          Utilities::fixed_power<2>(p[1] * (1.0 - p[1]));
         return_hessian[1][1] =
-          (2.0 - 12.0 * p(1) + 12.0 * p(1) * p(1)) *
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) * p(2) * (1.0 - p(2)));
+          (2.0 - 12.0 * p[1] + 12.0 * p[1] * p[1]) *
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) * p[2] * (1.0 - p[2]));
         return_hessian[1][2] =
-          (2.0 * p(1) - 6.0 * Utilities::fixed_power<2>(p(1)) +
-           4.0 * Utilities::fixed_power<3>(p(1))) *
-          (2.0 * p(2) - 6.0 * Utilities::fixed_power<2>(p(2)) +
-           4.0 * Utilities::fixed_power<3>(p(2))) *
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)));
+          (2.0 * p[1] - 6.0 * Utilities::fixed_power<2>(p[1]) +
+           4.0 * Utilities::fixed_power<3>(p[1])) *
+          (2.0 * p[2] - 6.0 * Utilities::fixed_power<2>(p[2]) +
+           4.0 * Utilities::fixed_power<3>(p[2])) *
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]));
         return_hessian[2][2] =
-          (2.0 - 12.0 * p(2) + 12.0 * p(2) * p(2)) *
-          Utilities::fixed_power<2>(p(0) * (1.0 - p(0)) * p(1) * (1.0 - p(1)));
+          (2.0 - 12.0 * p[2] + 12.0 * p[2] * p[2]) *
+          Utilities::fixed_power<2>(p[0] * (1.0 - p[0]) * p[1] * (1.0 - p[1]));
       }
     else
       Assert(false, ExcNotImplemented());
index e3a7fdf2ba6324069d14902cbecb3d9f7313be08..1d488e0693b5d4e210b8768d0429d79446ef85b7 100644 (file)
@@ -1541,9 +1541,9 @@ namespace DataOutBase
          * return false;
          */
 
-        return (one(0) < two(0) ||
-                (!(two(0) < one(0)) &&
-                 (one(1) < two(1) || (!(two(1) < one(1)) && one(2) < two(2)))));
+        return (one[0] < two[0] ||
+                (!(two[0] < one[0]) &&
+                 (one[1] < two[1] || (!(two[1] < one[1]) && one[2] < two[2]))));
       }
     };
 
index 768040ccba4c7c08e5821976034f7ff4389124f0..ec31662b7fd805b0d67044beb3f932cdeead7f7c 100644 (file)
@@ -626,7 +626,7 @@ constexpr DEAL_II_HOST_DEVICE typename numbers::NumberTraits<Number>::real_type
   Number sum = internal::NumberType<Number>::value(0.0);
   for (unsigned int i = 0; i < dim; ++i)
     {
-      const Number diff = static_cast<Number>(this->values[i]) - p(i);
+      const Number diff = static_cast<Number>(this->values[i]) - p[i];
       sum += numbers::NumberTraits<Number>::abs_square(diff);
     }
 
index 2739f70662ad366aa027573e16195a0f3eb60fe5..20fa41c7b16e9e394597774c4fdc64378c210984 100644 (file)
@@ -340,7 +340,7 @@ PolynomialSpace<dim>::compute_derivative(const unsigned int i,
     std::vector<double> tmp(order + 1);
     for (unsigned int d = 0; d < dim; ++d)
       {
-        polynomials[indices[d]].value(p(d), tmp);
+        polynomials[indices[d]].value(p[d], tmp);
         for (unsigned int j = 0; j < order + 1; ++j)
           v[d][j] = tmp[j];
       }
index 14934a1799a41322fa43ef4fadacb466f1d64f84..e6e47cf75045d58824561187240bfba88fd1aea6 100644 (file)
@@ -163,23 +163,23 @@ namespace internal
                 *reinterpret_cast<Tensor<1, dim> *>(&derivative);
               if (i == 0)
                 {
-                  grad[0] = -2.5 + 3 * p(0);
-                  grad[1] = 1.5 - 3 * p(1);
+                  grad[0] = -2.5 + 3 * p[0];
+                  grad[1] = 1.5 - 3 * p[1];
                 }
               else if (i == 1)
                 {
-                  grad[0] = -0.5 + 3.0 * p(0);
-                  grad[1] = 1.5 - 3.0 * p(1);
+                  grad[0] = -0.5 + 3.0 * p[0];
+                  grad[1] = 1.5 - 3.0 * p[1];
                 }
               else if (i == 2)
                 {
-                  grad[0] = 1.5 - 3.0 * p(0);
-                  grad[1] = -2.5 + 3.0 * p(1);
+                  grad[0] = 1.5 - 3.0 * p[0];
+                  grad[1] = -2.5 + 3.0 * p[1];
                 }
               else if (i == 3)
                 {
-                  grad[0] = 1.5 - 3.0 * p(0);
-                  grad[1] = -0.5 + 3.0 * p(1);
+                  grad[0] = 1.5 - 3.0 * p[0];
+                  grad[1] = -0.5 + 3.0 * p[1];
                 }
               else
                 {
index 179a1aa9d1791c4fa80da81cc5bff957d71613dc..268ceedd440431d31858476a5d629dcc44ca8703 100644 (file)
@@ -555,7 +555,7 @@ TensorProductPolynomials<dim, PolynomialType>::compute_derivative(
     std::vector<double> tmp(5);
     for (unsigned int d = 0; d < dim; ++d)
       {
-        polynomials[indices[d]].value(p(d), tmp);
+        polynomials[indices[d]].value(p[d], tmp);
         v[d][0] = tmp[0];
         v[d][1] = tmp[1];
         v[d][2] = tmp[2];
@@ -739,7 +739,7 @@ AnisotropicPolynomials<dim>::compute_derivative(const unsigned int i,
 
   std::vector<std::vector<double>> v(dim, std::vector<double>(order + 1));
   for (unsigned int d = 0; d < dim; ++d)
-    polynomials[d][indices[d]].value(p(d), v[d]);
+    polynomials[d][indices[d]].value(p[d], v[d]);
 
   Tensor<order, dim> derivative;
   switch (order)
index 3753971c441dcfeec851f17a552e651459058f24..17f27282339d242dbe0b63d53f077f8006c02f1f 100644 (file)
@@ -343,10 +343,10 @@ TensorProductPolynomialsBubbles<dim>::compute_derivative(
               // compute grad(4*\prod_{i=1}^d (x_i(1-x_i)))(p)
               for (unsigned j = 0; j < dim; ++j)
                 derivative_1[d] *=
-                  (d == j ? 4 * (1 - 2 * p(j)) : 4 * p(j) * (1 - p(j)));
+                  (d == j ? 4 * (1 - 2 * p[j]) : 4 * p[j] * (1 - p[j]));
               // and multiply with (2*x_i-1)^{r-1}
               for (unsigned int i = 0; i < q_degree - 1; ++i)
-                derivative_1[d] *= 2 * p(comp) - 1;
+                derivative_1[d] *= 2 * p[comp] - 1;
             }
 
           if (q_degree >= 2)
@@ -354,11 +354,11 @@ TensorProductPolynomialsBubbles<dim>::compute_derivative(
               // add \prod_{i=1}^d 4*(x_i(1-x_i))(p)
               double value = 1.;
               for (unsigned int j = 0; j < dim; ++j)
-                value *= 4 * p(j) * (1 - p(j));
+                value *= 4 * p[j] * (1 - p[j]);
               // and multiply with grad(2*x_i-1)^{r-1}
               double tmp = value * 2 * (q_degree - 1);
               for (unsigned int i = 0; i < q_degree - 2; ++i)
-                tmp *= 2 * p(comp) - 1;
+                tmp *= 2 * p[comp] - 1;
               derivative_1[comp] += tmp;
             }
 
@@ -373,21 +373,21 @@ TensorProductPolynomialsBubbles<dim>::compute_derivative(
           {
             for (unsigned int c = 0; c < dim; ++c)
               {
-                v[c][0] = 4 * p(c) * (1 - p(c));
-                v[c][1] = 4 * (1 - 2 * p(c));
+                v[c][0] = 4 * p[c] * (1 - p[c]);
+                v[c][1] = 4 * (1 - 2 * p[c]);
                 v[c][2] = -8;
               }
 
             double tmp = 1.;
             for (unsigned int i = 0; i < q_degree - 1; ++i)
-              tmp *= 2 * p(comp) - 1;
+              tmp *= 2 * p[comp] - 1;
             v[dim][0] = tmp;
 
             if (q_degree >= 2)
               {
                 double tmp = 2 * (q_degree - 1);
                 for (unsigned int i = 0; i < q_degree - 2; ++i)
-                  tmp *= 2 * p(comp) - 1;
+                  tmp *= 2 * p[comp] - 1;
                 v[dim][1] = tmp;
               }
             else
@@ -397,7 +397,7 @@ TensorProductPolynomialsBubbles<dim>::compute_derivative(
               {
                 double tmp = 4 * (q_degree - 2) * (q_degree - 1);
                 for (unsigned int i = 0; i < q_degree - 3; ++i)
-                  tmp *= 2 * p(comp) - 1;
+                  tmp *= 2 * p[comp] - 1;
                 v[dim][2] = tmp;
               }
             else
index b0200ce7df7ab69fb21555a9de50ba7d3bda5566..feb89dedf32fc7a95b1c3a1ade2aa015392ca88c 100644 (file)
@@ -1792,7 +1792,7 @@ namespace FETools
             std::vector<Point<dim>> q_points_coarse(q_points_fine.size());
             for (unsigned int i = 0; i < q_points_fine.size(); ++i)
               for (unsigned int j = 0; j < dim; ++j)
-                q_points_coarse[i](j) = q_points_fine[i](j);
+                q_points_coarse[i][j] = q_points_fine[i][j];
             const Quadrature<dim>   q_coarse(q_points_coarse,
                                            fine.get_JxW_values());
             FEValues<dim, spacedim> coarse(mapping,
@@ -2210,7 +2210,7 @@ namespace FETools
             std::vector<Point<dim>> q_points_coarse(q_points_fine.size());
             for (unsigned int q = 0; q < q_points_fine.size(); ++q)
               for (unsigned int j = 0; j < dim; ++j)
-                q_points_coarse[q](j) = q_points_fine[q](j);
+                q_points_coarse[q][j] = q_points_fine[q][j];
             Quadrature<dim> q_coarse(q_points_coarse, fine.get_JxW_values());
             FEValues<dim, spacedim> coarse(
               coarse_cell->reference_cell()
index dd56d422f0a4d4e204a40e991b12d35fd707c3bc..7cc9858b2bee97e8888a23e419b8f5ecb6b58ae3 100644 (file)
@@ -68,8 +68,8 @@ namespace internal
       const Point<spacedim> &p)
     {
       Assert(spacedim == 1, ExcInternalError());
-      return Point<1>((p[0] - vertices[0](0)) /
-                      (vertices[1](0) - vertices[0](0)));
+      return Point<1>((p[0] - vertices[0][0]) /
+                      (vertices[1][0] - vertices[0][0]));
     }
 
 
@@ -86,18 +86,18 @@ namespace internal
       // For accuracy reasons, we do all arithmetic in extended precision
       // (long double). This has a noticeable effect on the hit rate for
       // borderline cases and thus makes the algorithm more robust.
-      const long double x = p(0);
-      const long double y = p(1);
-
-      const long double x0 = vertices[0](0);
-      const long double x1 = vertices[1](0);
-      const long double x2 = vertices[2](0);
-      const long double x3 = vertices[3](0);
-
-      const long double y0 = vertices[0](1);
-      const long double y1 = vertices[1](1);
-      const long double y2 = vertices[2](1);
-      const long double y3 = vertices[3](1);
+      const long double x = p[0];
+      const long double y = p[1];
+
+      const long double x0 = vertices[0][0];
+      const long double x1 = vertices[1][0];
+      const long double x2 = vertices[2][0];
+      const long double x3 = vertices[3][0];
+
+      const long double y0 = vertices[0][1];
+      const long double y1 = vertices[1][1];
+      const long double y2 = vertices[2][1];
+      const long double y3 = vertices[3][1];
 
       const long double a = (x1 - x3) * (y0 - y2) - (x0 - x2) * (y1 - y3);
       const long double b = -(x0 - x1 - x2 + x3) * y + (x - 2 * x1 + x3) * y0 -
index c2cfa6bb076d554c6fb81f89bf5269ed2a3dc65e..18ae6ed1115e7a0a7d2e1285da7a4ed987ed30d9 100644 (file)
@@ -1208,9 +1208,9 @@ namespace VectorTools
           Point<dim> shifted_reference_point_2 =
             reference_quadrature_points[q_point];
 
-          shifted_reference_point_1(edge_coordinate_direction[face][line]) +=
+          shifted_reference_point_1[edge_coordinate_direction[face][line]] +=
             tol;
-          shifted_reference_point_2(edge_coordinate_direction[face][line]) -=
+          shifted_reference_point_2[edge_coordinate_direction[face][line]] -=
             tol;
           Tensor<1, dim> tangential =
             (0.5 *
index 2c51fc98a76208aa2f632b4db030b76cb5872580..67f3097842a9ce848ab4c2dc21148872790932ba 100644 (file)
@@ -571,12 +571,12 @@ namespace Particles
 
     Point<spacedim> location;
     for (unsigned int i = 0; i < spacedim; ++i)
-      location(i) = *pdata++;
+      location[i] = *pdata++;
     set_location(location);
 
     Point<dim> reference_location;
     for (unsigned int i = 0; i < dim; ++i)
-      reference_location(i) = *pdata++;
+      reference_location[i] = *pdata++;
     set_reference_location(reference_location);
 
     // See if there are properties to load
index a4e1b0d6611182da2b5b5d6b3397e1cf44cd02d3..098b08fd29ef7a97c5c518330e207a4d9e689c6b 100644 (file)
@@ -443,7 +443,7 @@ namespace DataOutBase
 
     Point<3> int_pt;
     for (unsigned int d = 0; d < dim; ++d)
-      int_pt(d) = p(d);
+      int_pt[d] = p[d];
 
     const Map3DPoint::const_iterator it = existing_points.find(int_pt);
     unsigned int                     internal_ind;
@@ -487,7 +487,7 @@ namespace DataOutBase
       {
         for (unsigned int d = 0; d < node_dim; ++d)
           node_data[node_dim * existing_point.second + d] =
-            existing_point.first(d);
+            existing_point.first[d];
       }
   }
 
@@ -1316,13 +1316,13 @@ namespace
       {
         float data[dim];
         for (unsigned int d = 0; d < dim; ++d)
-          data[d] = p(d);
+          data[d] = p[d];
         stream.write(reinterpret_cast<const char *>(data), dim * sizeof(*data));
       }
     else
       {
         for (unsigned int d = 0; d < dim; ++d)
-          stream << p(d) << '\t';
+          stream << p[d] << '\t';
         stream << '\n';
       }
   }
@@ -1459,7 +1459,7 @@ namespace
   {
     Assert(selected_component != numbers::invalid_unsigned_int,
            ExcNotInitialized());
-    stream << p(selected_component) << ' ';
+    stream << p[selected_component] << ' ';
   }
 
 
@@ -1533,7 +1533,7 @@ namespace
   {
     Assert(selected_component != numbers::invalid_unsigned_int,
            ExcNotInitialized());
-    stream << p(selected_component) << '\n';
+    stream << p[selected_component] << '\n';
   }
 
 
@@ -1605,7 +1605,7 @@ namespace
     stream << index + 1 << "   ";
     // write out coordinates
     for (unsigned int i = 0; i < dim; ++i)
-      stream << p(i) << ' ';
+      stream << p[i] << ' ';
     // fill with zeroes
     for (unsigned int i = dim; i < 3; ++i)
       stream << "0 ";
@@ -2197,8 +2197,8 @@ namespace DataOutBase
     RgbValues rgb_values = {0, 0, 0};
 
     // A difficult color scale:
-    //     xmin          = black  (1)
-    // 3/4*xmin+1/4*xmax = blue   (2)
+    //     xmin          = black  [1]
+    // 3/4*xmin+1/4*xmax = blue   [2]
     // 1/2*xmin+1/2*xmax = green  (3)
     // 1/4*xmin+3/4*xmax = red    (4)
     //              xmax = white  (5)
@@ -2209,17 +2209,17 @@ namespace DataOutBase
     //      /      /\  /  /\    /
     // ____/    __/  \/  /  \__/
 
-    //     { 0                                (1) - (3)
+    //     { 0                                [1] - (3)
     // r = { ( 4*x-2*xmin+2*xmax)/(xmax-xmin) (3) - (4)
     //     { 1                                (4) - (5)
     //
-    //     { 0                                (1) - (2)
-    // g = { ( 4*x-3*xmin-  xmax)/(xmax-xmin) (2) - (3)
+    //     { 0                                [1] - [2]
+    // g = { ( 4*x-3*xmin-  xmax)/(xmax-xmin) [2] - (3)
     //     { (-4*x+  xmin+3*xmax)/(xmax-xmin) (3) - (4)
     //     { ( 4*x-  xmin-3*xmax)/(xmax-xmin) (4) - (5)
     //
-    //     { ( 4*x-4*xmin       )/(xmax-xmin) (1) - (2)
-    // b = { (-4*x+2*xmin+2*xmax)/(xmax-xmin) (2) - (3)
+    //     { ( 4*x-4*xmin       )/(xmax-xmin) [1] - [2]
+    // b = { (-4*x+2*xmin+2*xmax)/(xmax-xmin) [2] - (3)
     //     { 0                                (3) - (4)
     //     { ( 4*x-  xmin-3*xmax)/(xmax-xmin) (4) - (5)
 
@@ -4144,37 +4144,37 @@ namespace DataOutBase
                         const unsigned int jr =
                           (j == n_subdivisions) ? j : (j + 1);
 
-                        h1(0) =
-                          ver[ir * d1 + j * d2](0) - ver[il * d1 + j * d2](0);
-                        h1(1) = patch.data(0, ir * d1 + j * d2) -
+                        h1[0] =
+                          ver[ir * d1 + j * d2][0] - ver[il * d1 + j * d2][0];
+                        h1[1] = patch.data(0, ir * d1 + j * d2) -
                                 patch.data(0, il * d1 + j * d2);
-                        h1(2) =
-                          ver[ir * d1 + j * d2](1) - ver[il * d1 + j * d2](1);
+                        h1[2] =
+                          ver[ir * d1 + j * d2][1] - ver[il * d1 + j * d2][1];
 
-                        h2(0) =
-                          ver[i * d1 + jr * d2](0) - ver[i * d1 + jl * d2](0);
-                        h2(1) = patch.data(0, i * d1 + jr * d2) -
+                        h2[0] =
+                          ver[i * d1 + jr * d2][0] - ver[i * d1 + jl * d2][0];
+                        h2[1] = patch.data(0, i * d1 + jr * d2) -
                                 patch.data(0, i * d1 + jl * d2);
-                        h2(2) =
-                          ver[i * d1 + jr * d2](1) - ver[i * d1 + jl * d2](1);
+                        h2[2] =
+                          ver[i * d1 + jr * d2][1] - ver[i * d1 + jl * d2][1];
 
-                        nrml[i * d1 + j * d2](0) =
-                          h1(1) * h2(2) - h1(2) * h2(1);
-                        nrml[i * d1 + j * d2](1) =
-                          h1(2) * h2(0) - h1(0) * h2(2);
-                        nrml[i * d1 + j * d2](2) =
-                          h1(0) * h2(1) - h1(1) * h2(0);
+                        nrml[i * d1 + j * d2][0] =
+                          h1[1] * h2[2] - h1[2] * h2[1];
+                        nrml[i * d1 + j * d2][1] =
+                          h1[2] * h2[0] - h1[0] * h2[2];
+                        nrml[i * d1 + j * d2][2] =
+                          h1[0] * h2[1] - h1[1] * h2[0];
 
                         // normalize Vector
-                        double norm = std::hypot(nrml[i * d1 + j * d2](0),
-                                                 nrml[i * d1 + j * d2](1),
-                                                 nrml[i * d1 + j * d2](2));
+                        double norm = std::hypot(nrml[i * d1 + j * d2][0],
+                                                 nrml[i * d1 + j * d2][1],
+                                                 nrml[i * d1 + j * d2][2]);
 
-                        if (nrml[i * d1 + j * d2](1) < 0)
+                        if (nrml[i * d1 + j * d2][1] < 0)
                           norm *= -1.;
 
                         for (unsigned int k = 0; k < 3; ++k)
-                          nrml[i * d1 + j * d2](k) /= norm;
+                          nrml[i * d1 + j * d2][k] /= norm;
                       }
                 }
 
@@ -4190,62 +4190,62 @@ namespace DataOutBase
 
                         // down/right triangle
                         out << "smooth_triangle {" << '\n'
-                            << "\t<" << ver[dl](0) << "," << patch.data(0, dl)
-                            << "," << ver[dl](1) << ">, <" << nrml[dl](0)
-                            << ", " << nrml[dl](1) << ", " << nrml[dl](2)
+                            << "\t<" << ver[dl][0] << "," << patch.data(0, dl)
+                            << "," << ver[dl][1] << ">, <" << nrml[dl][0]
+                            << ", " << nrml[dl][1] << ", " << nrml[dl][2]
                             << ">," << '\n';
-                        out << " \t<" << ver[dl + d1](0) << ","
-                            << patch.data(0, dl + d1) << "," << ver[dl + d1](1)
-                            << ">, <" << nrml[dl + d1](0) << ", "
-                            << nrml[dl + d1](1) << ", " << nrml[dl + d1](2)
+                        out << " \t<" << ver[dl + d1][0] << ","
+                            << patch.data(0, dl + d1) << "," << ver[dl + d1][1]
+                            << ">, <" << nrml[dl + d1][0] << ", "
+                            << nrml[dl + d1][1] << ", " << nrml[dl + d1][2]
                             << ">," << '\n';
-                        out << "\t<" << ver[dl + d1 + d2](0) << ","
+                        out << "\t<" << ver[dl + d1 + d2][0] << ","
                             << patch.data(0, dl + d1 + d2) << ","
-                            << ver[dl + d1 + d2](1) << ">, <"
-                            << nrml[dl + d1 + d2](0) << ", "
-                            << nrml[dl + d1 + d2](1) << ", "
-                            << nrml[dl + d1 + d2](2) << ">}" << '\n';
+                            << ver[dl + d1 + d2][1] << ">, <"
+                            << nrml[dl + d1 + d2][0] << ", "
+                            << nrml[dl + d1 + d2][1] << ", "
+                            << nrml[dl + d1 + d2][2] << ">}" << '\n';
 
                         // upper/left triangle
                         out << "smooth_triangle {" << '\n'
-                            << "\t<" << ver[dl](0) << "," << patch.data(0, dl)
-                            << "," << ver[dl](1) << ">, <" << nrml[dl](0)
-                            << ", " << nrml[dl](1) << ", " << nrml[dl](2)
+                            << "\t<" << ver[dl][0] << "," << patch.data(0, dl)
+                            << "," << ver[dl][1] << ">, <" << nrml[dl][0]
+                            << ", " << nrml[dl][1] << ", " << nrml[dl][2]
                             << ">," << '\n';
-                        out << "\t<" << ver[dl + d1 + d2](0) << ","
+                        out << "\t<" << ver[dl + d1 + d2][0] << ","
                             << patch.data(0, dl + d1 + d2) << ","
-                            << ver[dl + d1 + d2](1) << ">, <"
-                            << nrml[dl + d1 + d2](0) << ", "
-                            << nrml[dl + d1 + d2](1) << ", "
-                            << nrml[dl + d1 + d2](2) << ">," << '\n';
-                        out << "\t<" << ver[dl + d2](0) << ","
-                            << patch.data(0, dl + d2) << "," << ver[dl + d2](1)
-                            << ">, <" << nrml[dl + d2](0) << ", "
-                            << nrml[dl + d2](1) << ", " << nrml[dl + d2](2)
+                            << ver[dl + d1 + d2][1] << ">, <"
+                            << nrml[dl + d1 + d2][0] << ", "
+                            << nrml[dl + d1 + d2][1] << ", "
+                            << nrml[dl + d1 + d2][2] << ">," << '\n';
+                        out << "\t<" << ver[dl + d2][0] << ","
+                            << patch.data(0, dl + d2) << "," << ver[dl + d2][1]
+                            << ">, <" << nrml[dl + d2][0] << ", "
+                            << nrml[dl + d2][1] << ", " << nrml[dl + d2][2]
                             << ">}" << '\n';
                       }
                     else
                       {
                         // writing standard triangles down/right triangle
                         out << "triangle {" << '\n'
-                            << "\t<" << ver[dl](0) << "," << patch.data(0, dl)
-                            << "," << ver[dl](1) << ">," << '\n';
-                        out << "\t<" << ver[dl + d1](0) << ","
-                            << patch.data(0, dl + d1) << "," << ver[dl + d1](1)
+                            << "\t<" << ver[dl][0] << "," << patch.data(0, dl)
+                            << "," << ver[dl][1] << ">," << '\n';
+                        out << "\t<" << ver[dl + d1][0] << ","
+                            << patch.data(0, dl + d1) << "," << ver[dl + d1][1]
                             << ">," << '\n';
-                        out << "\t<" << ver[dl + d1 + d2](0) << ","
+                        out << "\t<" << ver[dl + d1 + d2][0] << ","
                             << patch.data(0, dl + d1 + d2) << ","
-                            << ver[dl + d1 + d2](1) << ">}" << '\n';
+                            << ver[dl + d1 + d2][1] << ">}" << '\n';
 
                         // upper/left triangle
                         out << "triangle {" << '\n'
-                            << "\t<" << ver[dl](0) << "," << patch.data(0, dl)
-                            << "," << ver[dl](1) << ">," << '\n';
-                        out << "\t<" << ver[dl + d1 + d2](0) << ","
+                            << "\t<" << ver[dl][0] << "," << patch.data(0, dl)
+                            << "," << ver[dl][1] << ">," << '\n';
+                        out << "\t<" << ver[dl + d1 + d2][0] << ","
                             << patch.data(0, dl + d1 + d2) << ","
-                            << ver[dl + d1 + d2](1) << ">," << '\n';
-                        out << "\t<" << ver[dl + d2](0) << ","
-                            << patch.data(0, dl + d2) << "," << ver[dl + d2](1)
+                            << ver[dl + d1 + d2][1] << ">," << '\n';
+                        out << "\t<" << ver[dl + d2][0] << ","
+                            << patch.data(0, dl + d2) << "," << ver[dl + d2][1]
                             << ">}" << '\n';
                       }
                   }
@@ -4263,8 +4263,8 @@ namespace DataOutBase
                   << "  v_steps 0" << '\n';
               for (int i = 0; i < 16; ++i)
                 {
-                  out << "\t<" << ver[i](0) << "," << patch.data(0, i) << ","
-                      << ver[i](1) << ">";
+                  out << "\t<" << ver[i][0] << "," << patch.data(0, i) << ","
+                      << ver[i][1] << ">";
                   if (i != 15)
                     out << ",";
                   out << '\n';
@@ -4425,7 +4425,7 @@ namespace DataOutBase
                   case 3:
                     // Copy z-coordinates into the height vector
                     for (unsigned int i = 0; i < 4; ++i)
-                      heights[i] = points[i](2);
+                      heights[i] = points[i][2];
                     break;
                   default:
                     Assert(false, ExcNotImplemented());
@@ -4452,11 +4452,11 @@ namespace DataOutBase
                            sz = std::sin(flags.turn_angle * 2 * pi / 360.);
               for (unsigned int vertex = 0; vertex < 4; ++vertex)
                 {
-                  const double x = points[vertex](0), y = points[vertex](1),
+                  const double x = points[vertex][0], y = points[vertex][1],
                                z = -heights[vertex];
 
-                  eps_cell.vertices[vertex](0) = -cz * x + sz * y;
-                  eps_cell.vertices[vertex](1) =
+                  eps_cell.vertices[vertex][0] = -cz * x + sz * y;
+                  eps_cell.vertices[vertex][1] =
                     -cx * sz * x - cx * cz * y - sx * z;
 
                   //      ( 1 0    0 )
@@ -4486,8 +4486,8 @@ namespace DataOutBase
                 -(heights[0] + heights[1] + heights[2] + heights[3]) / 4;
 
               // compute the depth into the picture
-              eps_cell.depth = -sx * sz * center_point(0) -
-                               sx * cz * center_point(1) + cx * center_height;
+              eps_cell.depth = -sx * sz * center_point[0] -
+                               sx * cz * center_point[1] + cx * center_height;
 
               if (flags.draw_cells && flags.shade_cells)
                 {
@@ -4533,18 +4533,18 @@ namespace DataOutBase
 
     // find out minimum and maximum x and y coordinates to compute offsets and
     // scaling factors
-    double x_min = cells.begin()->vertices[0](0);
+    double x_min = cells.begin()->vertices[0][0];
     double x_max = x_min;
-    double y_min = cells.begin()->vertices[0](1);
+    double y_min = cells.begin()->vertices[0][1];
     double y_max = y_min;
 
     for (const auto &cell : cells)
       for (const auto &vertex : cell.vertices)
         {
-          x_min = std::min(x_min, vertex(0));
-          x_max = std::max(x_max, vertex(0));
-          y_min = std::min(y_min, vertex(1));
-          y_max = std::max(y_max, vertex(1));
+          x_min = std::min(x_min, vertex[0]);
+          x_max = std::max(x_max, vertex[0]);
+          y_min = std::min(y_min, vertex[1]);
+          y_max = std::max(y_max, vertex[1]);
         }
 
     // scale in x-direction such that in the output 0 <= x <= 300. don't scale
index 55c13d91d6ae4b60aef6a3e3af52ac53c15ba337..0814474acb34843d3b39599d5967ff864631af7b 100644 (file)
@@ -217,7 +217,7 @@ namespace Functions
         // the radius.
         double r2 = 0;
         for (unsigned int d = 1; d < dim; ++d)
-          r2 += p(d) * p(d);
+          r2 += p[d] * p[d];
         r2 *= inv_sqr_radius;
 
         // x-velocity
@@ -226,7 +226,7 @@ namespace Functions
         for (unsigned int d = 1; d < dim; ++d)
           values[d][k] = 0.;
         // pressure
-        values[dim][k] = -2 * (dim - 1) * inv_sqr_radius * p(0) / Reynolds +
+        values[dim][k] = -2 * (dim - 1) * inv_sqr_radius * p[0] / Reynolds +
                          this->mean_pressure;
       }
   }
@@ -252,7 +252,7 @@ namespace Functions
         // x-velocity
         values[0][k][0] = 0.;
         for (unsigned int d = 1; d < dim; ++d)
-          values[0][k][d] = -2. * p(d) * inv_sqr_radius;
+          values[0][k][d] = -2. * p[d] * inv_sqr_radius;
         // other velocities
         for (unsigned int d = 1; d < dim; ++d)
           values[d][k] = 0.;
@@ -317,8 +317,8 @@ namespace Functions
     for (unsigned int k = 0; k < n; ++k)
       {
         const Point<dim> &p  = points[k];
-        const double      x  = numbers::PI / 2. * p(0);
-        const double      y  = numbers::PI / 2. * p(1);
+        const double      x  = numbers::PI / 2. * p[0];
+        const double      y  = numbers::PI / 2. * p[1];
         const double      cx = std::cos(x);
         const double      cy = std::cos(y);
         const double      sx = std::sin(x);
@@ -332,7 +332,7 @@ namespace Functions
           }
         else if (dim == 3)
           {
-            const double z  = numbers::PI / 2. * p(2);
+            const double z  = numbers::PI / 2. * p[2];
             const double cz = std::cos(z);
             const double sz = std::sin(z);
 
@@ -366,8 +366,8 @@ namespace Functions
     for (unsigned int k = 0; k < n; ++k)
       {
         const Point<dim> &p   = points[k];
-        const double      x   = numbers::PI / 2. * p(0);
-        const double      y   = numbers::PI / 2. * p(1);
+        const double      x   = numbers::PI / 2. * p[0];
+        const double      y   = numbers::PI / 2. * p[1];
         const double      c2x = std::cos(2 * x);
         const double      c2y = std::cos(2 * y);
         const double      s2x = std::sin(2 * x);
@@ -386,7 +386,7 @@ namespace Functions
           }
         else if (dim == 3)
           {
-            const double z   = numbers::PI / 2. * p(2);
+            const double z   = numbers::PI / 2. * p[2];
             const double c2z = std::cos(2 * z);
             const double s2z = std::sin(2 * z);
             const double cz2 = .5 + .5 * c2z; // cos^2 z
@@ -446,8 +446,8 @@ namespace Functions
     for (unsigned int k = 0; k < n; ++k)
       {
         const Point<dim> &p   = points[k];
-        const double      x   = numbers::PI / 2. * p(0);
-        const double      y   = numbers::PI / 2. * p(1);
+        const double      x   = numbers::PI / 2. * p[0];
+        const double      y   = numbers::PI / 2. * p[1];
         const double      c2x = std::cos(2 * x);
         const double      c2y = std::cos(2 * y);
         const double      s2x = std::sin(2 * x);
@@ -464,7 +464,7 @@ namespace Functions
           }
         else if (dim == 3)
           {
-            const double z   = numbers::PI * p(2);
+            const double z   = numbers::PI * p[2];
             const double c2z = std::cos(2 * z);
             const double s2z = std::sin(2 * z);
 
@@ -556,8 +556,8 @@ namespace Functions
     for (unsigned int k = 0; k < n; ++k)
       {
         const Point<2> &p = points[k];
-        const double    x = p(0);
-        const double    y = p(1);
+        const double    x = p[0];
+        const double    y = p[1];
 
         if ((x < 0) || (y < 0))
           {
@@ -596,8 +596,8 @@ namespace Functions
     for (unsigned int k = 0; k < n; ++k)
       {
         const Point<2> &p = points[k];
-        const double    x = p(0);
-        const double    y = p(1);
+        const double    x = p[0];
+        const double    y = p[1];
 
         if ((x < 0) || (y < 0))
           {
@@ -689,8 +689,8 @@ namespace Functions
     for (unsigned int k = 0; k < n; ++k)
       {
         const Point<2> &p   = points[k];
-        const double    x   = p(0);
-        const double    y   = 2. * numbers::PI * p(1);
+        const double    x   = p[0];
+        const double    y   = 2. * numbers::PI * p[1];
         const double    elx = std::exp(lbda * x);
 
         values[0][k] = 1. - elx * std::cos(y);
@@ -713,8 +713,8 @@ namespace Functions
 
     for (unsigned int i = 0; i < n; ++i)
       {
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         const double elx = std::exp(lbda * x);
         const double cy  = std::cos(2 * numbers::PI * y);
@@ -748,8 +748,8 @@ namespace Functions
         for (unsigned int k = 0; k < n; ++k)
           {
             const Point<2> &p   = points[k];
-            const double    x   = p(0);
-            const double    y   = zp * p(1);
+            const double    x   = p[0];
+            const double    y   = zp * p[1];
             const double    elx = std::exp(lbda * x);
             const double    u   = 1. - elx * std::cos(y);
             const double    ux  = -lbda * elx * std::cos(y);
index 7e11ff326ab2825a8ec3006ad17dea8a57991618..31e5c4d0926ace227748bb6089f59e1db1687846 100644 (file)
@@ -129,7 +129,7 @@ namespace Functions
   Q1WedgeFunction<dim>::value(const Point<dim> &p, const unsigned int) const
   {
     Assert(dim >= 2, ExcInternalError());
-    return p(0) * p(1);
+    return p[0] * p[1];
   }
 
 
@@ -147,7 +147,7 @@ namespace Functions
     for (unsigned int i = 0; i < points.size(); ++i)
       {
         const Point<dim> &p = points[i];
-        values[i]           = p(0) * p(1);
+        values[i]           = p[0] * p[1];
       }
   }
 
@@ -166,7 +166,7 @@ namespace Functions
     for (unsigned int i = 0; i < points.size(); ++i)
       {
         const Point<dim> &p = points[i];
-        values[i](0)        = p(0) * p(1);
+        values[i](0)        = p[0] * p[1];
       }
   }
 
@@ -202,8 +202,8 @@ namespace Functions
   {
     Assert(dim >= 2, ExcInternalError());
     Tensor<1, dim> erg;
-    erg[0] = p(1);
-    erg[1] = p(0);
+    erg[0] = p[1];
+    erg[1] = p[0];
     return erg;
   }
 
@@ -221,8 +221,8 @@ namespace Functions
 
     for (unsigned int i = 0; i < points.size(); ++i)
       {
-        gradients[i][0] = points[i](1);
-        gradients[i][1] = points[i](0);
+        gradients[i][0] = points[i][1];
+        gradients[i][1] = points[i][0];
       }
   }
 
@@ -241,8 +241,8 @@ namespace Functions
 
     for (unsigned int i = 0; i < points.size(); ++i)
       {
-        gradients[i][0][0] = points[i](1);
-        gradients[i][0][1] = points[i](0);
+        gradients[i][0][0] = points[i][1];
+        gradients[i][0][1] = points[i][0];
       }
   }
 
@@ -263,11 +263,11 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          return 1. - p(0) * p(0) + offset;
+          return 1. - p[0] * p[0] + offset;
         case 2:
-          return (1. - p(0) * p(0)) * (1. - p(1) * p(1)) + offset;
+          return (1. - p[0] * p[0]) * (1. - p[1] * p[1]) + offset;
         case 3:
-          return (1. - p(0) * p(0)) * (1. - p(1) * p(1)) * (1. - p(2) * p(2)) +
+          return (1. - p[0] * p[0]) * (1. - p[1] * p[1]) * (1. - p[2] * p[2]) +
                  offset;
         default:
           Assert(false, ExcNotImplemented());
@@ -290,14 +290,14 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              values[i] = 1. - p(0) * p(0) + offset;
+              values[i] = 1. - p[0] * p[0] + offset;
               break;
             case 2:
-              values[i] = (1. - p(0) * p(0)) * (1. - p(1) * p(1)) + offset;
+              values[i] = (1. - p[0] * p[0]) * (1. - p[1] * p[1]) + offset;
               break;
             case 3:
               values[i] =
-                (1. - p(0) * p(0)) * (1. - p(1) * p(1)) * (1. - p(2) * p(2)) +
+                (1. - p[0] * p[0]) * (1. - p[1] * p[1]) * (1. - p[2] * p[2]) +
                 offset;
               break;
             default:
@@ -317,11 +317,11 @@ namespace Functions
         case 1:
           return -2.;
         case 2:
-          return -2. * ((1. - p(0) * p(0)) + (1. - p(1) * p(1)));
+          return -2. * ((1. - p[0] * p[0]) + (1. - p[1] * p[1]));
         case 3:
-          return -2. * ((1. - p(0) * p(0)) * (1. - p(1) * p(1)) +
-                        (1. - p(1) * p(1)) * (1. - p(2) * p(2)) +
-                        (1. - p(2) * p(2)) * (1. - p(0) * p(0)));
+          return -2. * ((1. - p[0] * p[0]) * (1. - p[1] * p[1]) +
+                        (1. - p[1] * p[1]) * (1. - p[2] * p[2]) +
+                        (1. - p[2] * p[2]) * (1. - p[0] * p[0]));
         default:
           Assert(false, ExcNotImplemented());
       }
@@ -346,12 +346,12 @@ namespace Functions
               values[i] = -2.;
               break;
             case 2:
-              values[i] = -2. * ((1. - p(0) * p(0)) + (1. - p(1) * p(1)));
+              values[i] = -2. * ((1. - p[0] * p[0]) + (1. - p[1] * p[1]));
               break;
             case 3:
-              values[i] = -2. * ((1. - p(0) * p(0)) * (1. - p(1) * p(1)) +
-                                 (1. - p(1) * p(1)) * (1. - p(2) * p(2)) +
-                                 (1. - p(2) * p(2)) * (1. - p(0) * p(0)));
+              values[i] = -2. * ((1. - p[0] * p[0]) * (1. - p[1] * p[1]) +
+                                 (1. - p[1] * p[1]) * (1. - p[2] * p[2]) +
+                                 (1. - p[2] * p[2]) * (1. - p[0] * p[0]));
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -367,16 +367,16 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          result[0] = -2. * p(0);
+          result[0] = -2. * p[0];
           break;
         case 2:
-          result[0] = -2. * p(0) * (1. - p(1) * p(1));
-          result[1] = -2. * p(1) * (1. - p(0) * p(0));
+          result[0] = -2. * p[0] * (1. - p[1] * p[1]);
+          result[1] = -2. * p[1] * (1. - p[0] * p[0]);
           break;
         case 3:
-          result[0] = -2. * p(0) * (1. - p(1) * p(1)) * (1. - p(2) * p(2));
-          result[1] = -2. * p(1) * (1. - p(0) * p(0)) * (1. - p(2) * p(2));
-          result[2] = -2. * p(2) * (1. - p(0) * p(0)) * (1. - p(1) * p(1));
+          result[0] = -2. * p[0] * (1. - p[1] * p[1]) * (1. - p[2] * p[2]);
+          result[1] = -2. * p[1] * (1. - p[0] * p[0]) * (1. - p[2] * p[2]);
+          result[2] = -2. * p[2] * (1. - p[0] * p[0]) * (1. - p[1] * p[1]);
           break;
         default:
           Assert(false, ExcNotImplemented());
@@ -399,19 +399,19 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              gradients[i][0] = -2. * p(0);
+              gradients[i][0] = -2. * p[0];
               break;
             case 2:
-              gradients[i][0] = -2. * p(0) * (1. - p(1) * p(1));
-              gradients[i][1] = -2. * p(1) * (1. - p(0) * p(0));
+              gradients[i][0] = -2. * p[0] * (1. - p[1] * p[1]);
+              gradients[i][1] = -2. * p[1] * (1. - p[0] * p[0]);
               break;
             case 3:
               gradients[i][0] =
-                -2. * p(0) * (1. - p(1) * p(1)) * (1. - p(2) * p(2));
+                -2. * p[0] * (1. - p[1] * p[1]) * (1. - p[2] * p[2]);
               gradients[i][1] =
-                -2. * p(1) * (1. - p(0) * p(0)) * (1. - p(2) * p(2));
+                -2. * p[1] * (1. - p[0] * p[0]) * (1. - p[2] * p[2]);
               gradients[i][2] =
-                -2. * p(2) * (1. - p(0) * p(0)) * (1. - p(1) * p(1));
+                -2. * p[2] * (1. - p[0] * p[0]) * (1. - p[1] * p[1]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -435,14 +435,14 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          return std::cos(numbers::PI_2 * p(0));
+          return std::cos(numbers::PI_2 * p[0]);
         case 2:
-          return std::cos(numbers::PI_2 * p(0)) *
-                 std::cos(numbers::PI_2 * p(1));
+          return std::cos(numbers::PI_2 * p[0]) *
+                 std::cos(numbers::PI_2 * p[1]);
         case 3:
-          return std::cos(numbers::PI_2 * p(0)) *
-                 std::cos(numbers::PI_2 * p(1)) *
-                 std::cos(numbers::PI_2 * p(2));
+          return std::cos(numbers::PI_2 * p[0]) *
+                 std::cos(numbers::PI_2 * p[1]) *
+                 std::cos(numbers::PI_2 * p[2]);
         default:
           Assert(false, ExcNotImplemented());
       }
@@ -489,16 +489,16 @@ namespace Functions
       {
         case 1:
           return -numbers::PI_2 * numbers::PI_2 *
-                 std::cos(numbers::PI_2 * p(0));
+                 std::cos(numbers::PI_2 * p[0]);
         case 2:
           return -2 * numbers::PI_2 * numbers::PI_2 *
-                 std::cos(numbers::PI_2 * p(0)) *
-                 std::cos(numbers::PI_2 * p(1));
+                 std::cos(numbers::PI_2 * p[0]) *
+                 std::cos(numbers::PI_2 * p[1]);
         case 3:
           return -3 * numbers::PI_2 * numbers::PI_2 *
-                 std::cos(numbers::PI_2 * p(0)) *
-                 std::cos(numbers::PI_2 * p(1)) *
-                 std::cos(numbers::PI_2 * p(2));
+                 std::cos(numbers::PI_2 * p[0]) *
+                 std::cos(numbers::PI_2 * p[1]) *
+                 std::cos(numbers::PI_2 * p[2]);
         default:
           Assert(false, ExcNotImplemented());
       }
@@ -526,24 +526,24 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          result[0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0));
+          result[0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]);
           break;
         case 2:
-          result[0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                      std::cos(numbers::PI_2 * p(1));
-          result[1] = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                      std::sin(numbers::PI_2 * p(1));
+          result[0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                      std::cos(numbers::PI_2 * p[1]);
+          result[1] = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                      std::sin(numbers::PI_2 * p[1]);
           break;
         case 3:
-          result[0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                      std::cos(numbers::PI_2 * p(1)) *
-                      std::cos(numbers::PI_2 * p(2));
-          result[1] = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                      std::sin(numbers::PI_2 * p(1)) *
-                      std::cos(numbers::PI_2 * p(2));
-          result[2] = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                      std::cos(numbers::PI_2 * p(1)) *
-                      std::sin(numbers::PI_2 * p(2));
+          result[0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                      std::cos(numbers::PI_2 * p[1]) *
+                      std::cos(numbers::PI_2 * p[2]);
+          result[1] = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                      std::sin(numbers::PI_2 * p[1]) *
+                      std::cos(numbers::PI_2 * p[2]);
+          result[2] = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                      std::cos(numbers::PI_2 * p[1]) *
+                      std::sin(numbers::PI_2 * p[2]);
           break;
         default:
           Assert(false, ExcNotImplemented());
@@ -566,26 +566,26 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              gradients[i][0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0));
+              gradients[i][0] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]);
               break;
             case 2:
               gradients[i][0] = -numbers::PI_2 *
-                                std::sin(numbers::PI_2 * p(0)) *
-                                std::cos(numbers::PI_2 * p(1));
+                                std::sin(numbers::PI_2 * p[0]) *
+                                std::cos(numbers::PI_2 * p[1]);
               gradients[i][1] = -numbers::PI_2 *
-                                std::cos(numbers::PI_2 * p(0)) *
-                                std::sin(numbers::PI_2 * p(1));
+                                std::cos(numbers::PI_2 * p[0]) *
+                                std::sin(numbers::PI_2 * p[1]);
               break;
             case 3:
               gradients[i][0] =
-                -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                std::cos(numbers::PI_2 * p(1)) * std::cos(numbers::PI_2 * p(2));
+                -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                std::cos(numbers::PI_2 * p[1]) * std::cos(numbers::PI_2 * p[2]);
               gradients[i][1] =
-                -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                std::sin(numbers::PI_2 * p(1)) * std::cos(numbers::PI_2 * p(2));
+                -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                std::sin(numbers::PI_2 * p[1]) * std::cos(numbers::PI_2 * p[2]);
               gradients[i][2] =
-                -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                std::cos(numbers::PI_2 * p(1)) * std::sin(numbers::PI_2 * p(2));
+                -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                std::cos(numbers::PI_2 * p[1]) * std::sin(numbers::PI_2 * p[2]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -603,14 +603,14 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          result[0][0] = -pi2 * std::cos(numbers::PI_2 * p(0));
+          result[0][0] = -pi2 * std::cos(numbers::PI_2 * p[0]);
           break;
         case 2:
           {
-            const double coco = -pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                std::cos(numbers::PI_2 * p(1));
-            const double sisi = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                std::sin(numbers::PI_2 * p(1));
+            const double coco = -pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                std::cos(numbers::PI_2 * p[1]);
+            const double sisi = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                std::sin(numbers::PI_2 * p[1]);
             result[0][0] = coco;
             result[1][1] = coco;
             // for SymmetricTensor we assign [ij] and [ji] simultaneously:
@@ -619,18 +619,18 @@ namespace Functions
           break;
         case 3:
           {
-            const double cococo = -pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                  std::cos(numbers::PI_2 * p(1)) *
-                                  std::cos(numbers::PI_2 * p(2));
-            const double sisico = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                  std::sin(numbers::PI_2 * p(1)) *
-                                  std::cos(numbers::PI_2 * p(2));
-            const double sicosi = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                  std::cos(numbers::PI_2 * p(1)) *
-                                  std::sin(numbers::PI_2 * p(2));
-            const double cosisi = pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                  std::sin(numbers::PI_2 * p(1)) *
-                                  std::sin(numbers::PI_2 * p(2));
+            const double cococo = -pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                  std::cos(numbers::PI_2 * p[1]) *
+                                  std::cos(numbers::PI_2 * p[2]);
+            const double sisico = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                  std::sin(numbers::PI_2 * p[1]) *
+                                  std::cos(numbers::PI_2 * p[2]);
+            const double sicosi = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                  std::cos(numbers::PI_2 * p[1]) *
+                                  std::sin(numbers::PI_2 * p[2]);
+            const double cosisi = pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                  std::sin(numbers::PI_2 * p[1]) *
+                                  std::sin(numbers::PI_2 * p[2]);
 
             result[0][0] = cococo;
             result[1][1] = cococo;
@@ -665,14 +665,14 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              hessians[i][0][0] = -pi2 * std::cos(numbers::PI_2 * p(0));
+              hessians[i][0][0] = -pi2 * std::cos(numbers::PI_2 * p[0]);
               break;
             case 2:
               {
-                const double coco = -pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                    std::cos(numbers::PI_2 * p(1));
-                const double sisi = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                    std::sin(numbers::PI_2 * p(1));
+                const double coco = -pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                    std::cos(numbers::PI_2 * p[1]);
+                const double sisi = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                    std::sin(numbers::PI_2 * p[1]);
                 hessians[i][0][0] = coco;
                 hessians[i][1][1] = coco;
                 // for SymmetricTensor we assign [ij] and [ji] simultaneously:
@@ -681,18 +681,18 @@ namespace Functions
               break;
             case 3:
               {
-                const double cococo = -pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                      std::cos(numbers::PI_2 * p(1)) *
-                                      std::cos(numbers::PI_2 * p(2));
-                const double sisico = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                      std::sin(numbers::PI_2 * p(1)) *
-                                      std::cos(numbers::PI_2 * p(2));
-                const double sicosi = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                      std::cos(numbers::PI_2 * p(1)) *
-                                      std::sin(numbers::PI_2 * p(2));
-                const double cosisi = pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                      std::sin(numbers::PI_2 * p(1)) *
-                                      std::sin(numbers::PI_2 * p(2));
+                const double cococo = -pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                      std::cos(numbers::PI_2 * p[1]) *
+                                      std::cos(numbers::PI_2 * p[2]);
+                const double sisico = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                      std::sin(numbers::PI_2 * p[1]) *
+                                      std::cos(numbers::PI_2 * p[2]);
+                const double sicosi = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                      std::cos(numbers::PI_2 * p[1]) *
+                                      std::sin(numbers::PI_2 * p[2]);
+                const double cosisi = pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                      std::sin(numbers::PI_2 * p[1]) *
+                                      std::sin(numbers::PI_2 * p[2]);
 
                 hessians[i][0][0] = cococo;
                 hessians[i][1][1] = cococo;
@@ -728,14 +728,14 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          return (-numbers::PI_2 * std::sin(numbers::PI_2 * p(0)));
+          return (-numbers::PI_2 * std::sin(numbers::PI_2 * p[0]));
         case 2:
-          return (-numbers::PI_2 * std::sin(numbers::PI_2 * p(d)) *
-                  std::cos(numbers::PI_2 * p(d1)));
+          return (-numbers::PI_2 * std::sin(numbers::PI_2 * p[d]) *
+                  std::cos(numbers::PI_2 * p[d1]));
         case 3:
-          return (-numbers::PI_2 * std::sin(numbers::PI_2 * p(d)) *
-                  std::cos(numbers::PI_2 * p(d1)) *
-                  std::cos(numbers::PI_2 * p(d2)));
+          return (-numbers::PI_2 * std::sin(numbers::PI_2 * p[d]) *
+                  std::cos(numbers::PI_2 * p[d1]) *
+                  std::cos(numbers::PI_2 * p[d2]));
         default:
           Assert(false, ExcNotImplemented());
       }
@@ -752,24 +752,24 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          result(0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0));
+          result(0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]);
           break;
         case 2:
-          result(0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                      std::cos(numbers::PI_2 * p(1));
-          result(1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                      std::sin(numbers::PI_2 * p(1));
+          result(0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                      std::cos(numbers::PI_2 * p[1]);
+          result(1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                      std::sin(numbers::PI_2 * p[1]);
           break;
         case 3:
-          result(0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                      std::cos(numbers::PI_2 * p(1)) *
-                      std::cos(numbers::PI_2 * p(2));
-          result(1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                      std::sin(numbers::PI_2 * p(1)) *
-                      std::cos(numbers::PI_2 * p(2));
-          result(2) = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                      std::cos(numbers::PI_2 * p(1)) *
-                      std::sin(numbers::PI_2 * p(2));
+          result(0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                      std::cos(numbers::PI_2 * p[1]) *
+                      std::cos(numbers::PI_2 * p[2]);
+          result(1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                      std::sin(numbers::PI_2 * p[1]) *
+                      std::cos(numbers::PI_2 * p[2]);
+          result(2) = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                      std::cos(numbers::PI_2 * p[1]) *
+                      std::sin(numbers::PI_2 * p[2]);
           break;
         default:
           Assert(false, ExcNotImplemented());
@@ -795,16 +795,16 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              values[i] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(d));
+              values[i] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[d]);
               break;
             case 2:
-              values[i] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(d)) *
-                          std::cos(numbers::PI_2 * p(d1));
+              values[i] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[d]) *
+                          std::cos(numbers::PI_2 * p[d1]);
               break;
             case 3:
-              values[i] = -numbers::PI_2 * std::sin(numbers::PI_2 * p(d)) *
-                          std::cos(numbers::PI_2 * p(d1)) *
-                          std::cos(numbers::PI_2 * p(d2));
+              values[i] = -numbers::PI_2 * std::sin(numbers::PI_2 * p[d]) *
+                          std::cos(numbers::PI_2 * p[d1]) *
+                          std::cos(numbers::PI_2 * p[d2]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -828,24 +828,24 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              values[i](0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0));
+              values[i](0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]);
               break;
             case 2:
-              values[i](0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                             std::cos(numbers::PI_2 * p(1));
-              values[i](1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                             std::sin(numbers::PI_2 * p(1));
+              values[i](0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                             std::cos(numbers::PI_2 * p[1]);
+              values[i](1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                             std::sin(numbers::PI_2 * p[1]);
               break;
             case 3:
-              values[i](0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p(0)) *
-                             std::cos(numbers::PI_2 * p(1)) *
-                             std::cos(numbers::PI_2 * p(2));
-              values[i](1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                             std::sin(numbers::PI_2 * p(1)) *
-                             std::cos(numbers::PI_2 * p(2));
-              values[i](2) = -numbers::PI_2 * std::cos(numbers::PI_2 * p(0)) *
-                             std::cos(numbers::PI_2 * p(1)) *
-                             std::sin(numbers::PI_2 * p(2));
+              values[i](0) = -numbers::PI_2 * std::sin(numbers::PI_2 * p[0]) *
+                             std::cos(numbers::PI_2 * p[1]) *
+                             std::cos(numbers::PI_2 * p[2]);
+              values[i](1) = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                             std::sin(numbers::PI_2 * p[1]) *
+                             std::cos(numbers::PI_2 * p[2]);
+              values[i](2) = -numbers::PI_2 * std::cos(numbers::PI_2 * p[0]) *
+                             std::cos(numbers::PI_2 * p[1]) *
+                             std::sin(numbers::PI_2 * p[2]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -877,24 +877,24 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          result[0] = -pi2 * std::cos(numbers::PI_2 * p(0));
+          result[0] = -pi2 * std::cos(numbers::PI_2 * p[0]);
           break;
         case 2:
-          result[d] = -pi2 * std::cos(numbers::PI_2 * p(d)) *
-                      std::cos(numbers::PI_2 * p(d1));
-          result[d1] = pi2 * std::sin(numbers::PI_2 * p(d)) *
-                       std::sin(numbers::PI_2 * p(d1));
+          result[d] = -pi2 * std::cos(numbers::PI_2 * p[d]) *
+                      std::cos(numbers::PI_2 * p[d1]);
+          result[d1] = pi2 * std::sin(numbers::PI_2 * p[d]) *
+                       std::sin(numbers::PI_2 * p[d1]);
           break;
         case 3:
-          result[d] = -pi2 * std::cos(numbers::PI_2 * p(d)) *
-                      std::cos(numbers::PI_2 * p(d1)) *
-                      std::cos(numbers::PI_2 * p(d2));
-          result[d1] = pi2 * std::sin(numbers::PI_2 * p(d)) *
-                       std::sin(numbers::PI_2 * p(d1)) *
-                       std::cos(numbers::PI_2 * p(d2));
-          result[d2] = pi2 * std::sin(numbers::PI_2 * p(d)) *
-                       std::cos(numbers::PI_2 * p(d1)) *
-                       std::sin(numbers::PI_2 * p(d2));
+          result[d] = -pi2 * std::cos(numbers::PI_2 * p[d]) *
+                      std::cos(numbers::PI_2 * p[d1]) *
+                      std::cos(numbers::PI_2 * p[d2]);
+          result[d1] = pi2 * std::sin(numbers::PI_2 * p[d]) *
+                       std::sin(numbers::PI_2 * p[d1]) *
+                       std::cos(numbers::PI_2 * p[d2]);
+          result[d2] = pi2 * std::sin(numbers::PI_2 * p[d]) *
+                       std::cos(numbers::PI_2 * p[d1]) *
+                       std::sin(numbers::PI_2 * p[d2]);
           break;
         default:
           Assert(false, ExcNotImplemented());
@@ -924,24 +924,24 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              result[0] = -pi2 * std::cos(numbers::PI_2 * p(0));
+              result[0] = -pi2 * std::cos(numbers::PI_2 * p[0]);
               break;
             case 2:
-              result[d] = -pi2 * std::cos(numbers::PI_2 * p(d)) *
-                          std::cos(numbers::PI_2 * p(d1));
-              result[d1] = pi2 * std::sin(numbers::PI_2 * p(d)) *
-                           std::sin(numbers::PI_2 * p(d1));
+              result[d] = -pi2 * std::cos(numbers::PI_2 * p[d]) *
+                          std::cos(numbers::PI_2 * p[d1]);
+              result[d1] = pi2 * std::sin(numbers::PI_2 * p[d]) *
+                           std::sin(numbers::PI_2 * p[d1]);
               break;
             case 3:
-              result[d] = -pi2 * std::cos(numbers::PI_2 * p(d)) *
-                          std::cos(numbers::PI_2 * p(d1)) *
-                          std::cos(numbers::PI_2 * p(d2));
-              result[d1] = pi2 * std::sin(numbers::PI_2 * p(d)) *
-                           std::sin(numbers::PI_2 * p(d1)) *
-                           std::cos(numbers::PI_2 * p(d2));
-              result[d2] = pi2 * std::sin(numbers::PI_2 * p(d)) *
-                           std::cos(numbers::PI_2 * p(d1)) *
-                           std::sin(numbers::PI_2 * p(d2));
+              result[d] = -pi2 * std::cos(numbers::PI_2 * p[d]) *
+                          std::cos(numbers::PI_2 * p[d1]) *
+                          std::cos(numbers::PI_2 * p[d2]);
+              result[d1] = pi2 * std::sin(numbers::PI_2 * p[d]) *
+                           std::sin(numbers::PI_2 * p[d1]) *
+                           std::cos(numbers::PI_2 * p[d2]);
+              result[d2] = pi2 * std::sin(numbers::PI_2 * p[d]) *
+                           std::cos(numbers::PI_2 * p[d1]) *
+                           std::sin(numbers::PI_2 * p[d2]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -965,14 +965,14 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              gradients[i][0][0] = -pi2 * std::cos(numbers::PI_2 * p(0));
+              gradients[i][0][0] = -pi2 * std::cos(numbers::PI_2 * p[0]);
               break;
             case 2:
               {
-                const double coco = -pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                    std::cos(numbers::PI_2 * p(1));
-                const double sisi = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                    std::sin(numbers::PI_2 * p(1));
+                const double coco = -pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                    std::cos(numbers::PI_2 * p[1]);
+                const double sisi = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                    std::sin(numbers::PI_2 * p[1]);
                 gradients[i][0][0] = coco;
                 gradients[i][1][1] = coco;
                 gradients[i][0][1] = sisi;
@@ -981,18 +981,18 @@ namespace Functions
               break;
             case 3:
               {
-                const double cococo = -pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                      std::cos(numbers::PI_2 * p(1)) *
-                                      std::cos(numbers::PI_2 * p(2));
-                const double sisico = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                      std::sin(numbers::PI_2 * p(1)) *
-                                      std::cos(numbers::PI_2 * p(2));
-                const double sicosi = pi2 * std::sin(numbers::PI_2 * p(0)) *
-                                      std::cos(numbers::PI_2 * p(1)) *
-                                      std::sin(numbers::PI_2 * p(2));
-                const double cosisi = pi2 * std::cos(numbers::PI_2 * p(0)) *
-                                      std::sin(numbers::PI_2 * p(1)) *
-                                      std::sin(numbers::PI_2 * p(2));
+                const double cococo = -pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                      std::cos(numbers::PI_2 * p[1]) *
+                                      std::cos(numbers::PI_2 * p[2]);
+                const double sisico = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                      std::sin(numbers::PI_2 * p[1]) *
+                                      std::cos(numbers::PI_2 * p[2]);
+                const double sicosi = pi2 * std::sin(numbers::PI_2 * p[0]) *
+                                      std::cos(numbers::PI_2 * p[1]) *
+                                      std::sin(numbers::PI_2 * p[2]);
+                const double cosisi = pi2 * std::cos(numbers::PI_2 * p[0]) *
+                                      std::sin(numbers::PI_2 * p[1]) *
+                                      std::sin(numbers::PI_2 * p[2]);
 
                 gradients[i][0][0] = cococo;
                 gradients[i][1][1] = cococo;
@@ -1021,11 +1021,11 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          return std::exp(p(0));
+          return std::exp(p[0]);
         case 2:
-          return std::exp(p(0)) * std::exp(p(1));
+          return std::exp(p[0]) * std::exp(p[1]);
         case 3:
-          return std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+          return std::exp(p[0]) * std::exp(p[1]) * std::exp(p[2]);
         default:
           Assert(false, ExcNotImplemented());
       }
@@ -1047,13 +1047,13 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              values[i] = std::exp(p(0));
+              values[i] = std::exp(p[0]);
               break;
             case 2:
-              values[i] = std::exp(p(0)) * std::exp(p(1));
+              values[i] = std::exp(p[0]) * std::exp(p[1]);
               break;
             case 3:
-              values[i] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+              values[i] = std::exp(p[0]) * std::exp(p[1]) * std::exp(p[2]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -1068,11 +1068,11 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          return std::exp(p(0));
+          return std::exp(p[0]);
         case 2:
-          return 2 * std::exp(p(0)) * std::exp(p(1));
+          return 2 * std::exp(p[0]) * std::exp(p[1]);
         case 3:
-          return 3 * std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+          return 3 * std::exp(p[0]) * std::exp(p[1]) * std::exp(p[2]);
         default:
           Assert(false, ExcNotImplemented());
       }
@@ -1094,13 +1094,13 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              values[i] = std::exp(p(0));
+              values[i] = std::exp(p[0]);
               break;
             case 2:
-              values[i] = 2 * std::exp(p(0)) * std::exp(p(1));
+              values[i] = 2 * std::exp(p[0]) * std::exp(p[1]);
               break;
             case 3:
-              values[i] = 3 * std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+              values[i] = 3 * std::exp(p[0]) * std::exp(p[1]) * std::exp(p[2]);
               break;
             default:
               Assert(false, ExcNotImplemented());
@@ -1116,14 +1116,14 @@ namespace Functions
     switch (dim)
       {
         case 1:
-          result[0] = std::exp(p(0));
+          result[0] = std::exp(p[0]);
           break;
         case 2:
-          result[0] = std::exp(p(0)) * std::exp(p(1));
+          result[0] = std::exp(p[0]) * std::exp(p[1]);
           result[1] = result[0];
           break;
         case 3:
-          result[0] = std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+          result[0] = std::exp(p[0]) * std::exp(p[1]) * std::exp(p[2]);
           result[1] = result[0];
           result[2] = result[0];
           break;
@@ -1148,15 +1148,15 @@ namespace Functions
         switch (dim)
           {
             case 1:
-              gradients[i][0] = std::exp(p(0));
+              gradients[i][0] = std::exp(p[0]);
               break;
             case 2:
-              gradients[i][0] = std::exp(p(0)) * std::exp(p(1));
+              gradients[i][0] = std::exp(p[0]) * std::exp(p[1]);
               gradients[i][1] = gradients[i][0];
               break;
             case 3:
               gradients[i][0] =
-                std::exp(p(0)) * std::exp(p(1)) * std::exp(p(2));
+                std::exp(p[0]) * std::exp(p[1]) * std::exp(p[2]);
               gradients[i][1] = gradients[i][0];
               gradients[i][2] = gradients[i][0];
               break;
@@ -1172,8 +1172,8 @@ namespace Functions
   double
   LSingularityFunction::value(const Point<2> &p, const unsigned int) const
   {
-    const double x = p(0);
-    const double y = p(1);
+    const double x = p[0];
+    const double y = p[1];
 
     if ((x >= 0) && (y >= 0))
       return 0.;
@@ -1196,8 +1196,8 @@ namespace Functions
 
     for (unsigned int i = 0; i < points.size(); ++i)
       {
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         if ((x >= 0) && (y >= 0))
           values[i] = 0.;
@@ -1225,8 +1225,8 @@ namespace Functions
       {
         Assert(values[i].size() == 1,
                ExcDimensionMismatch(values[i].size(), 1));
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         if ((x >= 0) && (y >= 0))
           values[i](0) = 0.;
@@ -1268,8 +1268,8 @@ namespace Functions
   Tensor<1, 2>
   LSingularityFunction::gradient(const Point<2> &p, const unsigned int) const
   {
-    const double x   = p(0);
-    const double y   = p(1);
+    const double x   = p[0];
+    const double y   = p[1];
     const double phi = std::atan2(y, -x) + numbers::PI;
     const double r43 = std::pow(x * x + y * y, 2. / 3.);
 
@@ -1296,8 +1296,8 @@ namespace Functions
     for (unsigned int i = 0; i < points.size(); ++i)
       {
         const Point<2> &p   = points[i];
-        const double    x   = p(0);
-        const double    y   = p(1);
+        const double    x   = p[0];
+        const double    y   = p[1];
         const double    phi = std::atan2(y, -x) + numbers::PI;
         const double    r43 = std::pow(x * x + y * y, 2. / 3.);
 
@@ -1325,8 +1325,8 @@ namespace Functions
         Assert(gradients[i].size() == 1,
                ExcDimensionMismatch(gradients[i].size(), 1));
         const Point<2> &p   = points[i];
-        const double    x   = p(0);
-        const double    y   = p(1);
+        const double    x   = p[0];
+        const double    y   = p[1];
         const double    phi = std::atan2(y, -x) + numbers::PI;
         const double    r43 = std::pow(x * x + y * y, 2. / 3.);
 
@@ -1352,13 +1352,13 @@ namespace Functions
   {
     AssertIndexRange(d, 2);
 
-    const double x   = p(0);
-    const double y   = p(1);
+    const double x   = p[0];
+    const double y   = p[1];
     const double phi = std::atan2(y, -x) + numbers::PI;
     const double r43 = std::pow(x * x + y * y, 2. / 3.);
 
     return 2. / 3. *
-           (std::sin(2. / 3. * phi) * p(d) +
+           (std::sin(2. / 3. * phi) * p[d] +
             (d == 0 ? (std::cos(2. / 3. * phi) * y) :
                       (-std::cos(2. / 3. * phi) * x))) /
            r43;
@@ -1376,13 +1376,13 @@ namespace Functions
     for (unsigned int i = 0; i < points.size(); ++i)
       {
         const Point<2> &p   = points[i];
-        const double    x   = p(0);
-        const double    y   = p(1);
+        const double    x   = p[0];
+        const double    y   = p[1];
         const double    phi = std::atan2(y, -x) + numbers::PI;
         const double    r43 = std::pow(x * x + y * y, 2. / 3.);
 
         values[i] = 2. / 3. *
-                    (std::sin(2. / 3. * phi) * p(d) +
+                    (std::sin(2. / 3. * phi) * p[d] +
                      (d == 0 ? (std::cos(2. / 3. * phi) * y) :
                                (-std::cos(2. / 3. * phi) * x))) /
                     r43;
@@ -1402,8 +1402,8 @@ namespace Functions
       {
         AssertDimension(values[i].size(), 2);
         const Point<2> &p   = points[i];
-        const double    x   = p(0);
-        const double    y   = p(1);
+        const double    x   = p[0];
+        const double    y   = p[1];
         const double    phi = std::atan2(y, -x) + numbers::PI;
         const double    r43 = std::pow(x * x + y * y, 2. / 3.);
 
@@ -1473,8 +1473,8 @@ namespace Functions
   SlitSingularityFunction<dim>::value(const Point<dim> &p,
                                       const unsigned int) const
   {
-    const double x = p(0);
-    const double y = p(1);
+    const double x = p[0];
+    const double y = p[1];
 
     const double phi       = std::atan2(x, y) + numbers::PI;
     const double r_squared = x * x + y * y;
@@ -1495,8 +1495,8 @@ namespace Functions
 
     for (unsigned int i = 0; i < points.size(); ++i)
       {
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         const double phi       = std::atan2(x, y) + numbers::PI;
         const double r_squared = x * x + y * y;
@@ -1520,8 +1520,8 @@ namespace Functions
         Assert(values[i].size() == 1,
                ExcDimensionMismatch(values[i].size(), 1));
 
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         const double phi       = std::atan2(x, y) + numbers::PI;
         const double r_squared = x * x + y * y;
@@ -1560,8 +1560,8 @@ namespace Functions
   SlitSingularityFunction<dim>::gradient(const Point<dim> &p,
                                          const unsigned int) const
   {
-    const double x   = p(0);
-    const double y   = p(1);
+    const double x   = p[0];
+    const double y   = p[1];
     const double phi = std::atan2(x, y) + numbers::PI;
     const double r64 = std::pow(x * x + y * y, 3. / 4.);
 
@@ -1589,8 +1589,8 @@ namespace Functions
     for (unsigned int i = 0; i < points.size(); ++i)
       {
         const Point<dim> &p   = points[i];
-        const double      x   = p(0);
-        const double      y   = p(1);
+        const double      x   = p[0];
+        const double      y   = p[1];
         const double      phi = std::atan2(x, y) + numbers::PI;
         const double      r64 = std::pow(x * x + y * y, 3. / 4.);
 
@@ -1620,8 +1620,8 @@ namespace Functions
                ExcDimensionMismatch(gradients[i].size(), 1));
 
         const Point<dim> &p   = points[i];
-        const double      x   = p(0);
-        const double      y   = p(1);
+        const double      x   = p[0];
+        const double      y   = p[1];
         const double      phi = std::atan2(x, y) + numbers::PI;
         const double      r64 = std::pow(x * x + y * y, 3. / 4.);
 
@@ -1643,8 +1643,8 @@ namespace Functions
   SlitHyperSingularityFunction::value(const Point<2> &p,
                                       const unsigned int) const
   {
-    const double x = p(0);
-    const double y = p(1);
+    const double x = p[0];
+    const double y = p[1];
 
     const double phi       = std::atan2(x, y) + numbers::PI;
     const double r_squared = x * x + y * y;
@@ -1663,8 +1663,8 @@ namespace Functions
 
     for (unsigned int i = 0; i < points.size(); ++i)
       {
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         const double phi       = std::atan2(x, y) + numbers::PI;
         const double r_squared = x * x + y * y;
@@ -1687,8 +1687,8 @@ namespace Functions
         Assert(values[i].size() == 1,
                ExcDimensionMismatch(values[i].size(), 1));
 
-        const double x = points[i](0);
-        const double y = points[i](1);
+        const double x = points[i][0];
+        const double y = points[i][1];
 
         const double phi       = std::atan2(x, y) + numbers::PI;
         const double r_squared = x * x + y * y;
@@ -1724,8 +1724,8 @@ namespace Functions
   SlitHyperSingularityFunction::gradient(const Point<2> &p,
                                          const unsigned int) const
   {
-    const double x   = p(0);
-    const double y   = p(1);
+    const double x   = p[0];
+    const double y   = p[1];
     const double phi = std::atan2(x, y) + numbers::PI;
     const double r78 = std::pow(x * x + y * y, 7. / 8.);
 
@@ -1753,8 +1753,8 @@ namespace Functions
     for (unsigned int i = 0; i < points.size(); ++i)
       {
         const Point<2> &p   = points[i];
-        const double    x   = p(0);
-        const double    y   = p(1);
+        const double    x   = p[0];
+        const double    y   = p[1];
         const double    phi = std::atan2(x, y) + numbers::PI;
         const double    r78 = std::pow(x * x + y * y, 7. / 8.);
 
@@ -1782,8 +1782,8 @@ namespace Functions
                ExcDimensionMismatch(gradients[i].size(), 1));
 
         const Point<2> &p   = points[i];
-        const double    x   = p(0);
-        const double    y   = p(1);
+        const double    x   = p[0];
+        const double    y   = p[1];
         const double    phi = std::atan2(x, y) + numbers::PI;
         const double    r78 = std::pow(x * x + y * y, 7. / 8.);
 
@@ -1810,7 +1810,7 @@ namespace Functions
           angle = 0;
           break;
         case 2:
-          angle = std::atan2(direction(0), direction(1));
+          angle = std::atan2(direction[0], direction[1]);
           break;
         case 3:
           Assert(false, ExcNotImplemented());
@@ -1825,7 +1825,7 @@ namespace Functions
   double
   JumpFunction<dim>::value(const Point<dim> &p, const unsigned int) const
   {
-    const double x = steepness * (-cosine * p(0) + sine * p(1));
+    const double x = steepness * (-cosine * p[0] + sine * p[1]);
     return -std::atan(x);
   }
 
@@ -1842,7 +1842,7 @@ namespace Functions
 
     for (unsigned int i = 0; i < p.size(); ++i)
       {
-        const double x = steepness * (-cosine * p[i](0) + sine * p[i](1));
+        const double x = steepness * (-cosine * p[i][0] + sine * p[i][1]);
         values[i]      = -std::atan(x);
       }
   }
@@ -1852,7 +1852,7 @@ namespace Functions
   double
   JumpFunction<dim>::laplacian(const Point<dim> &p, const unsigned int) const
   {
-    const double x = steepness * (-cosine * p(0) + sine * p(1));
+    const double x = steepness * (-cosine * p[0] + sine * p[1]);
     const double r = 1 + x * x;
     return 2 * steepness * steepness * x / (r * r);
   }
@@ -1871,7 +1871,7 @@ namespace Functions
 
     for (unsigned int i = 0; i < p.size(); ++i)
       {
-        const double x = steepness * (-cosine * p[i](0) + sine * p[i](1));
+        const double x = steepness * (-cosine * p[i][0] + sine * p[i][1]);
         const double r = 1 + x * x;
         values[i]      = f * x / (r * r);
       }
@@ -1883,7 +1883,7 @@ namespace Functions
   Tensor<1, dim>
   JumpFunction<dim>::gradient(const Point<dim> &p, const unsigned int) const
   {
-    const double   x = steepness * (-cosine * p(0) + sine * p(1));
+    const double   x = steepness * (-cosine * p[0] + sine * p[1]);
     const double   r = -steepness * (1 + x * x);
     Tensor<1, dim> erg;
     erg[0] = cosine * r;
@@ -1904,7 +1904,7 @@ namespace Functions
 
     for (unsigned int i = 0; i < p.size(); ++i)
       {
-        const double x  = steepness * (cosine * p[i](0) + sine * p[i](1));
+        const double x  = steepness * (cosine * p[i][0] + sine * p[i][1]);
         const double r  = -steepness * (1 + x * x);
         gradients[i][0] = cosine * r;
         gradients[i][1] = sine * r;
@@ -2316,8 +2316,8 @@ namespace Functions
   {
     Assert(dim == 2, ExcNotImplemented());
     const double r  = p.distance(center);
-    const double co = (r == 0.) ? 0. : (p(0) - center(0)) / r;
-    const double si = (r == 0.) ? 0. : (p(1) - center(1)) / r;
+    const double co = (r == 0.) ? 0. : (p[0] - center[0]) / r;
+    const double si = (r == 0.) ? 0. : (p[1] - center[1]) / r;
 
     const double dJn =
       (order == 0) ?
@@ -2344,8 +2344,8 @@ namespace Functions
       {
         const Point<dim> &p  = points[k];
         const double      r  = p.distance(center);
-        const double      co = (r == 0.) ? 0. : (p(0) - center(0)) / r;
-        const double      si = (r == 0.) ? 0. : (p(1) - center(1)) / r;
+        const double      co = (r == 0.) ? 0. : (p[0] - center[0]) / r;
+        const double      si = (r == 0.) ? 0. : (p[1] - center[1]) / r;
 
         const double dJn =
           (order == 0) ?
@@ -2960,8 +2960,8 @@ namespace Functions
   RayleighKotheVortex<dim>::vector_value(const Point<dim> &point,
                                          Vector<double>   &values) const
   {
-    const double pi_x = numbers::PI * point(0);
-    const double pi_y = numbers::PI * point(1);
+    const double pi_x = numbers::PI * point[0];
+    const double pi_y = numbers::PI * point[1];
     const double pi_t = numbers::PI / T * this->get_time();
 
     values[0] = -2 * std::cos(pi_t) *
index dfcd2cd87b8a646b6fb18e54825cd0b935ec2816..9542e1856e0339c3080aaf02c2e795b4cbc17deb 100644 (file)
@@ -28,13 +28,13 @@ namespace internal
     AssertIndexRange(component_in_dim_plus_1, dim + 1);
 
     Point<dim + 1> output;
-    output(component_in_dim_plus_1) = coordinate_value;
+    output[component_in_dim_plus_1] = coordinate_value;
     for (int d = 0; d < dim; ++d)
       {
         const unsigned int component_to_write_to =
           dealii::internal::coordinate_to_one_dim_higher<dim>(
             component_in_dim_plus_1, d);
-        output(component_to_write_to) = point(d);
+        output[component_to_write_to] = point[d];
       }
 
     return output;
@@ -155,7 +155,7 @@ namespace Functions
                                const unsigned int component) const
   {
     const Point<dim + 1> full_point =
-      internal::create_higher_dim_point(point, open_direction, point_1D(0));
+      internal::create_higher_dim_point(point, open_direction, point_1D[0]);
     return function->value(full_point, component);
   }
 
@@ -167,7 +167,7 @@ namespace Functions
                                   const unsigned int component) const
   {
     const Point<dim + 1> full_point =
-      internal::create_higher_dim_point(point, open_direction, point_1D(0));
+      internal::create_higher_dim_point(point, open_direction, point_1D[0]);
     const Tensor<1, dim + 1> full_gradient =
       function->gradient(full_point, component);
 
@@ -186,7 +186,7 @@ namespace Functions
                                  const unsigned int component) const
   {
     const Point<dim + 1> full_point =
-      internal::create_higher_dim_point(point, open_direction, point_1D(0));
+      internal::create_higher_dim_point(point, open_direction, point_1D[0]);
     const Tensor<2, dim + 1> full_hessian =
       function->hessian(full_point, component);
 
index ee041f25817bce6b0c938d27c2b884916e5cd774..0360b7d7c47937e682f78141d19dcbb9ebef20ec 100644 (file)
@@ -54,7 +54,7 @@ namespace GeometricUtilities
         {
           scoord[0] = position.norm();
           // azimuth angle \theta:
-          scoord[1] = std::atan2(position(1), position(0));
+          scoord[1] = std::atan2(position[1], position[0]);
           // correct to [0,2*pi)
           if (scoord[1] < 0.0)
             scoord[1] += 2.0 * numbers::PI;
@@ -65,7 +65,7 @@ namespace GeometricUtilities
         {
           // acos returns the angle in the range [0,\pi]
           if (scoord[0] > std::numeric_limits<double>::min())
-            scoord[2] = std::acos(position(2) / scoord[0]);
+            scoord[2] = std::acos(position[2] / scoord[0]);
           else
             scoord[2] = 0.0;
         }
index 7c26d31cda976c18474dd2a6b7f4d9e3b657baf6..04d92e4fe4ecf2754a71cd3d3c4b41edb7607af3 100644 (file)
@@ -424,7 +424,7 @@ namespace internal
         init_muparser();
 
       for (unsigned int i = 0; i < dim; ++i)
-        data.vars[i] = p(i);
+        data.vars[i] = p[i];
       if (dim != this->n_vars)
         data.vars[dim] = time;
 
@@ -472,7 +472,7 @@ namespace internal
         init_muparser();
 
       for (unsigned int i = 0; i < dim; ++i)
-        data.vars[i] = p(i);
+        data.vars[i] = p[i];
       if (dim != this->n_vars)
         data.vars[dim] = time;
 
index 02b4004a5b9aa74d4d64238a64ae3ed1e731faf5..68261db079f8fb7f296dad88c91f647af9c9deb4 100644 (file)
@@ -66,8 +66,8 @@ namespace Polynomials
     for (unsigned int i = 0; i < supp.size(); ++i)
       if (i != center)
         {
-          lagrange_support_points.push_back(supp[i](0));
-          tmp_lagrange_weight *= supp[center](0) - supp[i](0);
+          lagrange_support_points.push_back(supp[i][0]);
+          tmp_lagrange_weight *= supp[center][0] - supp[i][0];
         }
 
     // check for underflow and overflow
@@ -571,7 +571,7 @@ namespace Polynomials
         std::vector<Point<1>> points(n + 1);
         const double          one_over_n = 1. / n;
         for (unsigned int k = 0; k <= n; ++k)
-          points[k](0) = static_cast<double>(k) * one_over_n;
+          points[k][0] = static_cast<double>(k) * one_over_n;
         return points;
       }
     } // namespace LagrangeEquidistantImplementation
index 40f57e27c4e3bd34f12b9ec8dc1af8a248092d37..d99890486bec20c10b8b06af1ad72e0e3d26ff96 100644 (file)
@@ -134,7 +134,7 @@ PolynomialSpace<dim>::compute_value(const unsigned int i,
   // directions
   double result = 1.;
   for (unsigned int d = 0; d < dim; ++d)
-    result *= polynomials[ix[d]].value(p(d));
+    result *= polynomials[ix[d]].value(p[d]);
   return result;
 }
 
@@ -155,7 +155,7 @@ PolynomialSpace<dim>::compute_grad(const unsigned int i,
   std::vector<double> v(2);
   for (unsigned int d = 0; d < dim; ++d)
     {
-      polynomials[ix[d]].value(p(d), v);
+      polynomials[ix[d]].value(p[d], v);
       result[d] *= v[1];
       for (unsigned int d1 = 0; d1 < dim; ++d1)
         if (d1 != d)
@@ -182,7 +182,7 @@ PolynomialSpace<dim>::compute_grad_grad(const unsigned int i,
   std::vector<double> v(3);
   for (unsigned int d = 0; d < dim; ++d)
     {
-      polynomials[ix[d]].value(p(d), v);
+      polynomials[ix[d]].value(p[d], v);
       result[d][d] *= v[2];
       for (unsigned int d1 = 0; d1 < dim; ++d1)
         {
@@ -263,7 +263,7 @@ PolynomialSpace<dim>::evaluate(
     for (unsigned int i = 0; i < v.size()[1]; ++i)
       {
         v(d, i).resize(v_size, 0.);
-        polynomials[i].value(p(d), v(d, i));
+        polynomials[i].value(p[d], v(d, i));
       }
 
   if (update_values)
index 224cdee950676d3cc6487871524b65213dabc8fe..5906df4516e9d1a55a7bb4020d74cff528aceabd 100644 (file)
@@ -109,7 +109,7 @@ PolynomialsABF<dim>::evaluate(
       // directions.
       Point<dim> p;
       for (unsigned int c = 0; c < dim; ++c)
-        p(c) = unit_point((c + d) % dim);
+        p[c] = unit_point[(c + d) % dim];
 
       polynomial_space.evaluate(p,
                                 p_values,
index 7a1505e01cd871462668fac4a020f93e471c5320..1780e56ce8c6678f39ff9418a94f2cc8b9997477 100644 (file)
@@ -193,8 +193,8 @@ double
 PolynomialsAdini<dim>::compute_value(const unsigned int i,
                                      const Point<dim>  &p) const
 {
-  const double x = p(0);
-  const double y = p(1);
+  const double x = p[0];
+  const double y = p[1];
   return coef(0, i) + coef(1, i) * x + coef(2, i) * y + coef(3, i) * x * x +
          coef(4, i) * y * y + coef(5, i) * x * y + coef(6, i) * x * x * x +
          coef(7, i) * y * y * y + coef(8, i) * x * y * y +
@@ -209,8 +209,8 @@ Tensor<1, dim>
 PolynomialsAdini<dim>::compute_grad(const unsigned int i,
                                     const Point<dim>  &p) const
 {
-  const double   x = p(0);
-  const double   y = p(1);
+  const double   x = p[0];
+  const double   y = p[1];
   Tensor<1, dim> tensor;
   tensor[0] = dx(0, i) + dx(1, i) * x + dx(2, i) * y + dx(3, i) * x * x +
               dx(4, i) * y * y + dx(5, i) * x * y + dx(6, i) * x * x * x +
@@ -233,8 +233,8 @@ Tensor<2, dim>
 PolynomialsAdini<dim>::compute_grad_grad(const unsigned int i,
                                          const Point<dim>  &p) const
 {
-  const double   x = p(0);
-  const double   y = p(1);
+  const double   x = p[0];
+  const double   y = p[1];
   Tensor<2, dim> tensor;
   tensor[0][0] = dxx(0, i) + dxx(1, i) * x + dxx(2, i) * y + dxx(3, i) * x * x +
                  dxx(4, i) * y * y + dxx(5, i) * x * y + dxx(6, i) * x * x * x +
index b431d9718be4256a612384a8aaefe8796bd41b52..6a2ec18212dd2664c2b9a53130446d345e9078a4 100644 (file)
@@ -132,22 +132,22 @@ PolynomialsBDM<dim>::evaluate(
   else if (dim == 2)
     {
       for (unsigned int d = 0; d < dim; ++d)
-        monomials[0].value(unit_point(d), monovali[d]);
+        monomials[0].value(unit_point[d], monovali[d]);
       if (values.size() != 0)
         {
           values[start][0]     = monovali[0][0];
-          values[start][1]     = -unit_point(1) * monovali[0][1];
-          values[start + 1][0] = unit_point(0) * monovali[1][1];
+          values[start][1]     = -unit_point[1] * monovali[0][1];
+          values[start + 1][0] = unit_point[0] * monovali[1][1];
           values[start + 1][1] = -monovali[1][0];
         }
       if (grads.size() != 0)
         {
           grads[start][0][0]     = monovali[0][1];
           grads[start][0][1]     = 0.;
-          grads[start][1][0]     = -unit_point(1) * monovali[0][2];
+          grads[start][1][0]     = -unit_point[1] * monovali[0][2];
           grads[start][1][1]     = -monovali[0][1];
           grads[start + 1][0][0] = monovali[1][1];
-          grads[start + 1][0][1] = unit_point(0) * monovali[1][2];
+          grads[start + 1][0][1] = unit_point[0] * monovali[1][2];
           grads[start + 1][1][0] = 0.;
           grads[start + 1][1][1] = -monovali[1][1];
         }
@@ -157,14 +157,14 @@ PolynomialsBDM<dim>::evaluate(
           grad_grads[start][0][0][1]     = 0.;
           grad_grads[start][0][1][0]     = 0.;
           grad_grads[start][0][1][1]     = 0.;
-          grad_grads[start][1][0][0]     = -unit_point(1) * monovali[0][3];
+          grad_grads[start][1][0][0]     = -unit_point[1] * monovali[0][3];
           grad_grads[start][1][0][1]     = -monovali[0][2];
           grad_grads[start][1][1][0]     = -monovali[0][2];
           grad_grads[start][1][1][1]     = 0.;
           grad_grads[start + 1][0][0][0] = 0;
           grad_grads[start + 1][0][0][1] = monovali[1][2];
           grad_grads[start + 1][0][1][0] = monovali[1][2];
-          grad_grads[start + 1][0][1][1] = unit_point(0) * monovali[1][3];
+          grad_grads[start + 1][0][1][1] = unit_point[0] * monovali[1][3];
           grad_grads[start + 1][1][0][0] = 0.;
           grad_grads[start + 1][1][0][1] = 0.;
           grad_grads[start + 1][1][1][0] = 0.;
@@ -184,9 +184,9 @@ PolynomialsBDM<dim>::evaluate(
           for (unsigned int d = 0; d < dim; ++d)
             {
               // p(t) = t^(i+1)
-              monomials[i + 1].value(unit_point(d), monovali[d]);
+              monomials[i + 1].value(unit_point[d], monovali[d]);
               // q(t) = t^(k-i)
-              monomials[this->degree() - 1 - i].value(unit_point(d),
+              monomials[this->degree() - 1 - i].value(unit_point[d],
                                                       monovalk[d]);
             }
 
@@ -194,21 +194,21 @@ PolynomialsBDM<dim>::evaluate(
             {
               // x p'(y) q(z)
               values[start][0] =
-                unit_point(0) * monovali[1][1] * monovalk[2][0];
+                unit_point[0] * monovali[1][1] * monovalk[2][0];
               // - p(y) q(z)
               values[start][1] = -monovali[1][0] * monovalk[2][0];
               values[start][2] = 0.;
 
               // y p'(z) q(x)
               values[start + 1][1] =
-                unit_point(1) * monovali[2][1] * monovalk[0][0];
+                unit_point[1] * monovali[2][1] * monovalk[0][0];
               // - p(z) q(x)
               values[start + 1][2] = -monovali[2][0] * monovalk[0][0];
               values[start + 1][0] = 0.;
 
               // z p'(x) q(y)
               values[start + 2][2] =
-                unit_point(2) * monovali[0][1] * monovalk[1][0];
+                unit_point[2] * monovali[0][1] * monovalk[1][0];
               // -p(x) q(y)
               values[start + 2][0] = -monovali[0][0] * monovalk[1][0];
               values[start + 2][1] = 0.;
@@ -218,9 +218,9 @@ PolynomialsBDM<dim>::evaluate(
             {
               grads[start][0][0] = monovali[1][1] * monovalk[2][0];
               grads[start][0][1] =
-                unit_point(0) * monovali[1][2] * monovalk[2][0];
+                unit_point[0] * monovali[1][2] * monovalk[2][0];
               grads[start][0][2] =
-                unit_point(0) * monovali[1][1] * monovalk[2][1];
+                unit_point[0] * monovali[1][1] * monovalk[2][1];
               grads[start][1][0] = 0.;
               grads[start][1][1] = -monovali[1][1] * monovalk[2][0];
               grads[start][1][2] = -monovali[1][0] * monovalk[2][1];
@@ -230,9 +230,9 @@ PolynomialsBDM<dim>::evaluate(
 
               grads[start + 1][1][1] = monovali[2][1] * monovalk[0][0];
               grads[start + 1][1][2] =
-                unit_point(1) * monovali[2][2] * monovalk[0][0];
+                unit_point[1] * monovali[2][2] * monovalk[0][0];
               grads[start + 1][1][0] =
-                unit_point(1) * monovali[2][1] * monovalk[0][1];
+                unit_point[1] * monovali[2][1] * monovalk[0][1];
               grads[start + 1][2][1] = 0.;
               grads[start + 1][2][2] = -monovali[2][1] * monovalk[0][0];
               grads[start + 1][2][0] = -monovali[2][0] * monovalk[0][1];
@@ -242,9 +242,9 @@ PolynomialsBDM<dim>::evaluate(
 
               grads[start + 2][2][2] = monovali[0][1] * monovalk[1][0];
               grads[start + 2][2][0] =
-                unit_point(2) * monovali[0][2] * monovalk[1][0];
+                unit_point[2] * monovali[0][2] * monovalk[1][0];
               grads[start + 2][2][1] =
-                unit_point(2) * monovali[0][1] * monovalk[1][1];
+                unit_point[2] * monovali[0][1] * monovalk[1][1];
               grads[start + 2][0][2] = 0.;
               grads[start + 2][0][0] = -monovali[0][1] * monovalk[1][0];
               grads[start + 2][0][1] = -monovali[0][0] * monovalk[1][1];
@@ -260,14 +260,14 @@ PolynomialsBDM<dim>::evaluate(
               grad_grads[start][0][0][2] = monovali[1][1] * monovalk[2][1];
               grad_grads[start][0][1][0] = monovali[1][2] * monovalk[2][0];
               grad_grads[start][0][1][1] =
-                unit_point(0) * monovali[1][3] * monovalk[2][0];
+                unit_point[0] * monovali[1][3] * monovalk[2][0];
               grad_grads[start][0][1][2] =
-                unit_point(0) * monovali[1][2] * monovalk[2][1];
+                unit_point[0] * monovali[1][2] * monovalk[2][1];
               grad_grads[start][0][2][0] = monovali[1][1] * monovalk[2][1];
               grad_grads[start][0][2][1] =
-                unit_point(0) * monovali[1][2] * monovalk[2][1];
+                unit_point[0] * monovali[1][2] * monovalk[2][1];
               grad_grads[start][0][2][2] =
-                unit_point(0) * monovali[1][1] * monovalk[2][2];
+                unit_point[0] * monovali[1][1] * monovalk[2][2];
               grad_grads[start][1][0][0] = 0.;
               grad_grads[start][1][0][1] = 0.;
               grad_grads[start][1][0][2] = 0.;
@@ -297,18 +297,18 @@ PolynomialsBDM<dim>::evaluate(
               grad_grads[start + 1][0][2][1] = 0.;
               grad_grads[start + 1][0][2][2] = 0.;
               grad_grads[start + 1][1][0][0] =
-                unit_point(1) * monovali[2][1] * monovalk[0][2];
+                unit_point[1] * monovali[2][1] * monovalk[0][2];
               grad_grads[start + 1][1][0][1] = monovali[2][1] * monovalk[0][1];
               grad_grads[start + 1][1][0][2] =
-                unit_point(1) * monovali[2][2] * monovalk[0][1];
+                unit_point[1] * monovali[2][2] * monovalk[0][1];
               grad_grads[start + 1][1][1][0] = monovalk[0][1] * monovali[2][1];
               grad_grads[start + 1][1][1][1] = 0.;
               grad_grads[start + 1][1][1][2] = monovalk[0][0] * monovali[2][2];
               grad_grads[start + 1][1][2][0] =
-                unit_point(1) * monovalk[0][1] * monovali[2][2];
+                unit_point[1] * monovalk[0][1] * monovali[2][2];
               grad_grads[start + 1][1][2][1] = monovalk[0][0] * monovali[2][2];
               grad_grads[start + 1][1][2][2] =
-                unit_point(1) * monovalk[0][0] * monovali[2][3];
+                unit_point[1] * monovalk[0][0] * monovali[2][3];
               grad_grads[start + 1][2][0][0] = -monovalk[0][2] * monovali[2][0];
               grad_grads[start + 1][2][0][1] = 0.;
               grad_grads[start + 1][2][0][2] = -monovalk[0][1] * monovali[2][1];
@@ -338,14 +338,14 @@ PolynomialsBDM<dim>::evaluate(
               grad_grads[start + 2][1][2][1] = 0.;
               grad_grads[start + 2][1][2][2] = 0.;
               grad_grads[start + 2][2][0][0] =
-                unit_point(2) * monovali[0][3] * monovalk[1][0];
+                unit_point[2] * monovali[0][3] * monovalk[1][0];
               grad_grads[start + 2][2][0][1] =
-                unit_point(2) * monovali[0][2] * monovalk[1][1];
+                unit_point[2] * monovali[0][2] * monovalk[1][1];
               grad_grads[start + 2][2][0][2] = monovali[0][2] * monovalk[1][0];
               grad_grads[start + 2][2][1][0] =
-                unit_point(2) * monovali[0][2] * monovalk[1][1];
+                unit_point[2] * monovali[0][2] * monovalk[1][1];
               grad_grads[start + 2][2][1][1] =
-                unit_point(2) * monovali[0][1] * monovalk[1][2];
+                unit_point[2] * monovali[0][1] * monovalk[1][2];
               grad_grads[start + 2][2][1][2] = monovali[0][1] * monovalk[1][1];
               grad_grads[start + 2][2][2][0] = monovali[0][2] * monovalk[1][0];
               grad_grads[start + 2][2][2][1] = monovali[0][1] * monovalk[1][1];
index 253eb7f8fd76f32ace70f9561caa2403a574cbe3..d5a824921b23b827c8aec61729fe17df05a41657 100644 (file)
@@ -133,8 +133,8 @@ PolynomialsNedelec<dim>::evaluate(
           // shifted one step in positive direction
           Point<dim> p;
 
-          p(0) = unit_point(1);
-          p(1) = unit_point(0);
+          p[0] = unit_point[1];
+          p[1] = unit_point[0];
 
           std::vector<double>         p_values((values.empty()) ? 0 : n_basis);
           std::vector<Tensor<1, dim>> p_grads((grads.empty()) ? 0 : n_basis);
@@ -327,18 +327,18 @@ PolynomialsNedelec<dim>::evaluate(
           std::vector<Tensor<2, dim>> p2_grad_grads(
             (grad_grads.empty()) ? 0 : n_basis);
 
-          p1(0) = unit_point(1);
-          p1(1) = unit_point(2);
-          p1(2) = unit_point(0);
+          p1[0] = unit_point[1];
+          p1[1] = unit_point[2];
+          p1[2] = unit_point[0];
           polynomial_space.evaluate(p1,
                                     p1_values,
                                     p1_grads,
                                     p1_grad_grads,
                                     empty_vector_of_3rd_order_tensors,
                                     empty_vector_of_4th_order_tensors);
-          p2(0) = unit_point(2);
-          p2(1) = unit_point(0);
-          p2(2) = unit_point(1);
+          p2[0] = unit_point[2];
+          p2[1] = unit_point[0];
+          p2[2] = unit_point[1];
           polynomial_space.evaluate(p2,
                                     p2_values,
                                     p2_grads,
index d85986634d852498c9e1c92c8bac4377a9cda83f..860732821a5427be6a3d42df87bec2002c20e598 100644 (file)
@@ -39,23 +39,23 @@ PolynomialsRannacherTurek<dim>::compute_value(const unsigned int i,
   Assert(dim == 2, ExcNotImplemented());
   if (i == 0)
     {
-      return (0.75 - 2.5 * p(0) + 1.5 * p(1) +
-              1.5 * (p(0) * p(0) - p(1) * p(1)));
+      return (0.75 - 2.5 * p[0] + 1.5 * p[1] +
+              1.5 * (p[0] * p[0] - p[1] * p[1]));
     }
   else if (i == 1)
     {
-      return (-0.25 - 0.5 * p(0) + 1.5 * p(1) +
-              1.5 * (p(0) * p(0) - p(1) * p(1)));
+      return (-0.25 - 0.5 * p[0] + 1.5 * p[1] +
+              1.5 * (p[0] * p[0] - p[1] * p[1]));
     }
   else if (i == 2)
     {
-      return (0.75 + 1.5 * p(0) - 2.5 * p(1) -
-              1.5 * (p(0) * p(0) - p(1) * p(1)));
+      return (0.75 + 1.5 * p[0] - 2.5 * p[1] -
+              1.5 * (p[0] * p[0] - p[1] * p[1]));
     }
   else if (i == 3)
     {
-      return (-0.25 + 1.5 * p(0) - 0.5 * p(1) -
-              1.5 * (p(0) * p(0) - p(1) * p(1)));
+      return (-0.25 + 1.5 * p[0] - 0.5 * p[1] -
+              1.5 * (p[0] * p[0] - p[1] * p[1]));
     }
 
   Assert(false, ExcNotImplemented());
@@ -74,23 +74,23 @@ PolynomialsRannacherTurek<dim>::compute_grad(const unsigned int i,
       Tensor<1, dim> grad;
       if (i == 0)
         {
-          grad[0] = -2.5 + 3 * p(0);
-          grad[1] = 1.5 - 3 * p(1);
+          grad[0] = -2.5 + 3 * p[0];
+          grad[1] = 1.5 - 3 * p[1];
         }
       else if (i == 1)
         {
-          grad[0] = -0.5 + 3.0 * p(0);
-          grad[1] = 1.5 - 3.0 * p(1);
+          grad[0] = -0.5 + 3.0 * p[0];
+          grad[1] = 1.5 - 3.0 * p[1];
         }
       else if (i == 2)
         {
-          grad[0] = 1.5 - 3.0 * p(0);
-          grad[1] = -2.5 + 3.0 * p(1);
+          grad[0] = 1.5 - 3.0 * p[0];
+          grad[1] = -2.5 + 3.0 * p[1];
         }
       else if (i == 3)
         {
-          grad[0] = 1.5 - 3.0 * p(0);
-          grad[1] = -0.5 + 3.0 * p(1);
+          grad[0] = 1.5 - 3.0 * p[0];
+          grad[1] = -0.5 + 3.0 * p[1];
         }
       else
         {
index 56c8cc56ae4bbdac687a1527f6102638e3714db8..2952983a81f7e3ac7d4ea5e6b932d561dbc4ac86 100644 (file)
@@ -172,7 +172,7 @@ PolynomialsRaviartThomas<dim>::evaluate(
       // through all directions.
       Point<dim> p;
       for (unsigned int c = 0; c < dim; ++c)
-        p(c) = unit_point((c + d) % dim);
+        p[c] = unit_point[(c + d) % dim];
 
       polynomial_space.evaluate(p,
                                 p_values,
index 1a18565738237fe30b100fb6c6e7427f437dfa91..3d27437bec31afa378e16bc37444aca732f42838 100644 (file)
@@ -126,14 +126,14 @@ PolynomialsRT_Bubbles<dim>::evaluate(
       //  monoval_i = x^i,
       //  monoval_plus = x^(k+1)
       for (unsigned int d = 0; d < dim; ++d)
-        monomials[my_degree + 1].value(unit_point(d),
+        monomials[my_degree + 1].value(unit_point[d],
                                        n_derivatives,
                                        monoval_plus[d]);
 
       for (unsigned int i = 0; i <= my_degree; ++i, ++start)
         {
           for (unsigned int d = 0; d < dim; ++d)
-            monomials[i].value(unit_point(d), n_derivatives, monoval_i[d]);
+            monomials[i].value(unit_point[d], n_derivatives, monoval_i[d]);
 
           if (values.size() != 0)
             {
@@ -216,10 +216,10 @@ PolynomialsRT_Bubbles<dim>::evaluate(
       //  monoval_* = x^*, monoval_jplus = x^(j+1)
       for (unsigned int d = 0; d < dim; ++d)
         {
-          monomials[my_degree + 1].value(unit_point(d),
+          monomials[my_degree + 1].value(unit_point[d],
                                          n_derivatives,
                                          monoval_plus[d]);
-          monomials[my_degree].value(unit_point(d), n_derivatives, monoval[d]);
+          monomials[my_degree].value(unit_point[d], n_derivatives, monoval[d]);
         }
 
       const unsigned int n_curls = (my_degree + 1) * (2 * my_degree + 1);
@@ -227,16 +227,16 @@ PolynomialsRT_Bubbles<dim>::evaluate(
       for (unsigned int i = 0; i <= my_degree; ++i)
         {
           for (unsigned int d = 0; d < dim; ++d)
-            monomials[i].value(unit_point(d), n_derivatives, monoval_i[d]);
+            monomials[i].value(unit_point[d], n_derivatives, monoval_i[d]);
 
           for (unsigned int j = 0; j <= my_degree; ++j)
             {
               for (unsigned int d = 0; d < dim; ++d)
                 {
-                  monomials[j].value(unit_point(d),
+                  monomials[j].value(unit_point[d],
                                      n_derivatives,
                                      monoval_j[d]);
-                  monomials[j + 1].value(unit_point(d),
+                  monomials[j + 1].value(unit_point[d],
                                          n_derivatives,
                                          monoval_jplus[d]);
                 }
index 5203a7eb8509b7b7899d8994133dc4871e16f62f..9114743a6aee254b1f660de5145b2648d8f5af02 100644 (file)
@@ -138,8 +138,8 @@ namespace internal
         for (const Point<2> &p : points)
           {
             Point<3> cell_point;
-            cell_point[xi_index]    = xi_scale * p(0) + xi_translation;
-            cell_point[eta_index]   = eta_scale * p(1) + eta_translation;
+            cell_point[xi_index]    = xi_scale * p[0] + xi_translation;
+            cell_point[eta_index]   = eta_scale * p[1] + eta_translation;
             cell_point[const_index] = const_value;
             q_points.push_back(cell_point);
           }
@@ -376,14 +376,14 @@ QProjector<2>::project_to_face(const ReferenceCell   &reference_cell,
         switch (face_no)
           {
             case 0:
-              q_points[p] = Point<dim>(quadrature.point(p)(0), 0);
+              q_points[p] = Point<dim>(quadrature.point(p)[0], 0);
               break;
             case 1:
               q_points[p] =
-                Point<dim>(1 - quadrature.point(p)(0), quadrature.point(p)(0));
+                Point<dim>(1 - quadrature.point(p)[0], quadrature.point(p)[0]);
               break;
             case 2:
-              q_points[p] = Point<dim>(0, 1 - quadrature.point(p)(0));
+              q_points[p] = Point<dim>(0, 1 - quadrature.point(p)[0]);
               break;
             default:
               Assert(false, ExcInternalError());
@@ -395,16 +395,16 @@ QProjector<2>::project_to_face(const ReferenceCell   &reference_cell,
         switch (face_no)
           {
             case 0:
-              q_points[p] = Point<dim>(0, quadrature.point(p)(0));
+              q_points[p] = Point<dim>(0, quadrature.point(p)[0]);
               break;
             case 1:
-              q_points[p] = Point<dim>(1, quadrature.point(p)(0));
+              q_points[p] = Point<dim>(1, quadrature.point(p)[0]);
               break;
             case 2:
-              q_points[p] = Point<dim>(quadrature.point(p)(0), 0);
+              q_points[p] = Point<dim>(quadrature.point(p)[0], 0);
               break;
             case 3:
-              q_points[p] = Point<dim>(quadrature.point(p)(0), 1);
+              q_points[p] = Point<dim>(quadrature.point(p)[0], 1);
               break;
             default:
               Assert(false, ExcInternalError());
@@ -519,11 +519,11 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(quadrature.point(p)(0) / 2, 0);
+                    q_points[p] = Point<dim>(quadrature.point(p)[0] / 2, 0);
                     break;
                   case 1:
                     q_points[p] =
-                      Point<dim>(0.5 + quadrature.point(p)(0) / 2, 0);
+                      Point<dim>(0.5 + quadrature.point(p)[0] / 2, 0);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -533,12 +533,12 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(1 - quadrature.point(p)(0) / 2,
-                                             quadrature.point(p)(0) / 2);
+                    q_points[p] = Point<dim>(1 - quadrature.point(p)[0] / 2,
+                                             quadrature.point(p)[0] / 2);
                     break;
                   case 1:
-                    q_points[p] = Point<dim>(0.5 - quadrature.point(p)(0) / 2,
-                                             0.5 + quadrature.point(p)(0) / 2);
+                    q_points[p] = Point<dim>(0.5 - quadrature.point(p)[0] / 2,
+                                             0.5 + quadrature.point(p)[0] / 2);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -548,11 +548,11 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(0, 1 - quadrature.point(p)(0) / 2);
+                    q_points[p] = Point<dim>(0, 1 - quadrature.point(p)[0] / 2);
                     break;
                   case 1:
                     q_points[p] =
-                      Point<dim>(0, 0.5 - quadrature.point(p)(0) / 2);
+                      Point<dim>(0, 0.5 - quadrature.point(p)[0] / 2);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -571,11 +571,11 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(0, quadrature.point(p)(0) / 2);
+                    q_points[p] = Point<dim>(0, quadrature.point(p)[0] / 2);
                     break;
                   case 1:
                     q_points[p] =
-                      Point<dim>(0, quadrature.point(p)(0) / 2 + 0.5);
+                      Point<dim>(0, quadrature.point(p)[0] / 2 + 0.5);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -585,11 +585,11 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(1, quadrature.point(p)(0) / 2);
+                    q_points[p] = Point<dim>(1, quadrature.point(p)[0] / 2);
                     break;
                   case 1:
                     q_points[p] =
-                      Point<dim>(1, quadrature.point(p)(0) / 2 + 0.5);
+                      Point<dim>(1, quadrature.point(p)[0] / 2 + 0.5);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -599,11 +599,11 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(quadrature.point(p)(0) / 2, 0);
+                    q_points[p] = Point<dim>(quadrature.point(p)[0] / 2, 0);
                     break;
                   case 1:
                     q_points[p] =
-                      Point<dim>(quadrature.point(p)(0) / 2 + 0.5, 0);
+                      Point<dim>(quadrature.point(p)[0] / 2 + 0.5, 0);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -613,11 +613,11 @@ QProjector<2>::project_to_subface(const ReferenceCell   &reference_cell,
               switch (subface_no)
                 {
                   case 0:
-                    q_points[p] = Point<dim>(quadrature.point(p)(0) / 2, 1);
+                    q_points[p] = Point<dim>(quadrature.point(p)[0] / 2, 1);
                     break;
                   case 1:
                     q_points[p] =
-                      Point<dim>(quadrature.point(p)(0) / 2 + 0.5, 1);
+                      Point<dim>(quadrature.point(p)[0] / 2 + 0.5, 1);
                     break;
                   default:
                     Assert(false, ExcInternalError());
@@ -1304,7 +1304,7 @@ QProjector<dim>::project_to_line(const ReferenceCell &reference_cell,
 
   for (unsigned int k = 0; k < n; ++k)
     {
-      const double alpha = quadrature.point(k)(0);
+      const double alpha = quadrature.point(k)[0];
       points[k]          = alpha * p2;
       points[k] += (1. - alpha) * p1;
       weights[k] = length * quadrature.weight(k);
index a3daba9958ef3987e1127d082ab037f86a8cefc6..d09401f0f628f02eb5a3e52ae2707c4216d24d5c 100644 (file)
@@ -155,8 +155,8 @@ Quadrature<dim>::Quadrature(const SubQuadrature &q1, const Quadrature<1> &q2)
         // compose coordinates of new quadrature point by tensor product in the
         // last component
         for (unsigned int d = 0; d < dim - 1; ++d)
-          quadrature_points[present_index](d) = q1.point(i1)(d);
-        quadrature_points[present_index](dim - 1) = q2.point(i2)(0);
+          quadrature_points[present_index][d] = q1.point(i1)[d];
+        quadrature_points[present_index][dim - 1] = q2.point(i2)[0];
 
         weights[present_index] = q1.weight(i1) * q2.weight(i2);
 
@@ -197,7 +197,7 @@ Quadrature<1>::Quadrature(const SubQuadrature &, const Quadrature<1> &q2)
     {
       // compose coordinates of new quadrature point by tensor product in the
       // last component
-      quadrature_points[present_index](0) = q2.point(i2)(0);
+      quadrature_points[present_index][0] = q2.point(i2)[0];
 
       weights[present_index] = q2.weight(i2);
 
@@ -258,11 +258,11 @@ Quadrature<dim>::Quadrature(const Quadrature<dim != 1 ? 1 : 0> &q)
     for (unsigned int i1 = 0; i1 < n1; ++i1)
       for (unsigned int i0 = 0; i0 < n0; ++i0)
         {
-          quadrature_points[k](0) = q.point(i0)(0);
+          quadrature_points[k][0] = q.point(i0)[0];
           if (dim > 1)
-            quadrature_points[k](1) = q.point(i1)(0);
+            quadrature_points[k][1] = q.point(i1)[0];
           if (dim > 2)
-            quadrature_points[k](2) = q.point(i2)(0);
+            quadrature_points[k][2] = q.point(i2)[0];
           weights[k] = q.weight(i0);
           if (dim > 1)
             weights[k] *= q.weight(i1);
@@ -370,7 +370,7 @@ QAnisotropic<dim>::QAnisotropic(const Quadrature<1> &qx)
   unsigned int k = 0;
   for (unsigned int k1 = 0; k1 < qx.size(); ++k1)
     {
-      this->quadrature_points[k](0) = qx.point(k1)(0);
+      this->quadrature_points[k][0] = qx.point(k1)[0];
       this->weights[k++]            = qx.weight(k1);
     }
   Assert(k == this->size(), ExcInternalError());
@@ -393,8 +393,8 @@ QAnisotropic<dim>::QAnisotropic(const Quadrature<1> &qx,
   for (unsigned int k2 = 0; k2 < qy.size(); ++k2)
     for (unsigned int k1 = 0; k1 < qx.size(); ++k1)
       {
-        this->quadrature_points[k](0)     = qx.point(k1)(0);
-        this->quadrature_points[k](dim_1) = qy.point(k2)(0);
+        this->quadrature_points[k][0]     = qx.point(k1)[0];
+        this->quadrature_points[k][dim_1] = qy.point(k2)[0];
         this->weights[k++]                = qx.weight(k1) * qy.weight(k2);
       }
   Assert(k == this->size(), ExcInternalError());
@@ -424,9 +424,9 @@ QAnisotropic<dim>::QAnisotropic(const Quadrature<1> &qx,
     for (unsigned int k2 = 0; k2 < qy.size(); ++k2)
       for (unsigned int k1 = 0; k1 < qx.size(); ++k1)
         {
-          this->quadrature_points[k](0)     = qx.point(k1)(0);
-          this->quadrature_points[k](dim_1) = qy.point(k2)(0);
-          this->quadrature_points[k](dim_2) = qz.point(k3)(0);
+          this->quadrature_points[k][0]     = qx.point(k1)[0];
+          this->quadrature_points[k][dim_1] = qy.point(k2)[0];
+          this->quadrature_points[k][dim_2] = qz.point(k3)[0];
           this->weights[k++] = qx.weight(k1) * qy.weight(k2) * qz.weight(k3);
         }
   Assert(k == this->size(), ExcInternalError());
@@ -522,7 +522,7 @@ QIterated<1>::QIterated(const Quadrature<1>         &base_quadrature,
              ++q_point)
           {
             this->quadrature_points[next_point] =
-              Point<1>(base_quadrature.point(q_point)(0) *
+              Point<1>(base_quadrature.point(q_point)[0] *
                          (intervals[copy + 1][0] - intervals[copy][0]) +
                        intervals[copy][0]);
             this->weights[next_point] =
@@ -564,7 +564,7 @@ QIterated<1>::QIterated(const Quadrature<1>         &base_quadrature,
               {
                 Assert(this->quadrature_points[next_point - double_point_offset]
                            .distance(Point<1>(
-                             base_quadrature.point(q_point)(0) *
+                             base_quadrature.point(q_point)[0] *
                                (intervals[copy + 1][0] - intervals[copy][0]) +
                              intervals[copy][0])) < 1e-10 /*tolerance*/,
                        ExcInternalError());
@@ -577,7 +577,7 @@ QIterated<1>::QIterated(const Quadrature<1>         &base_quadrature,
               }
 
             this->quadrature_points[next_point] =
-              Point<1>(base_quadrature.point(q_point)(0) *
+              Point<1>(base_quadrature.point(q_point)[0] *
                          (intervals[copy + 1][0] - intervals[copy][0]) +
                        intervals[copy][0]);
 
index 51eabd0f6d7957375edf0b1111cea2681a2bb47e..d5ebf5649082756c045ed3647de35056d567f2c9 100644 (file)
@@ -172,7 +172,7 @@ TensorProductPolynomials<dim, PolynomialType>::compute_value(
 
   double value = 1.;
   for (unsigned int d = 0; d < dim; ++d)
-    value *= polynomials[indices[d]].value(p(d));
+    value *= polynomials[indices[d]].value(p[d]);
 
   return value;
 }
@@ -210,7 +210,7 @@ TensorProductPolynomials<dim, PolynomialType>::compute_grad(
     std::vector<double> tmp(2);
     for (unsigned int d = 0; d < dim; ++d)
       {
-        polynomials[indices[d]].value(p(d), tmp);
+        polynomials[indices[d]].value(p[d], tmp);
         v[d][0] = tmp[0];
         v[d][1] = tmp[1];
       }
@@ -256,7 +256,7 @@ TensorProductPolynomials<dim, PolynomialType>::compute_grad_grad(
     std::vector<double> tmp(3);
     for (unsigned int d = 0; d < dim; ++d)
       {
-        polynomials[indices[d]].value(p(d), tmp);
+        polynomials[indices[d]].value(p[d], tmp);
         v[d][0] = tmp[0];
         v[d][1] = tmp[1];
         v[d][2] = tmp[2];
@@ -707,7 +707,7 @@ AnisotropicPolynomials<dim>::compute_value(const unsigned int i,
 
   double value = 1.;
   for (unsigned int d = 0; d < dim; ++d)
-    value *= polynomials[d][indices[d]].value(p(d));
+    value *= polynomials[d][indices[d]].value(p[d]);
 
   return value;
 }
@@ -740,7 +740,7 @@ AnisotropicPolynomials<dim>::compute_grad(const unsigned int i,
   // coordinate direction
   ndarray<double, dim, 2> v;
   for (unsigned int d = 0; d < dim; ++d)
-    polynomials[d][indices[d]].value(p(d), 1, v[d].data());
+    polynomials[d][indices[d]].value(p[d], 1, v[d].data());
 
   Tensor<1, dim> grad;
   for (unsigned int d = 0; d < dim; ++d)
@@ -777,7 +777,7 @@ AnisotropicPolynomials<dim>::compute_grad_grad(const unsigned int i,
 
   ndarray<double, dim, 3> v;
   for (unsigned int d = 0; d < dim; ++d)
-    polynomials[d][indices[d]].value(p(d), 2, v[d].data());
+    polynomials[d][indices[d]].value(p[d], 2, v[d].data());
 
   Tensor<2, dim> grad_grad;
   for (unsigned int d1 = 0; d1 < dim; ++d1)
index 46fe84f8b6fdffd105698c16f02b9790a6e4e564..84209e299028a094368ceaff9a60126bf7e18ed3 100644 (file)
@@ -83,12 +83,12 @@ TensorProductPolynomialsBubbles<dim>::compute_value(const unsigned int i,
   // Compute \prod_{i=1}^d 4*x_i*(1-x_i)
   double value = 1.;
   for (unsigned int j = 0; j < dim; ++j)
-    value *= 4 * p(j) * (1 - p(j));
+    value *= 4 * p[j] * (1 - p[j]);
 
   // Then multiply with (2x_i-1)^{r-1}. Since q_degree is generally a
   // small integer, using a loop is likely faster than using std::pow.
   for (unsigned int i = 0; i < q_degree - 1; ++i)
-    value *= (2 * p(comp) - 1);
+    value *= (2 * p[comp] - 1);
   return value;
 }
 
@@ -127,10 +127,10 @@ TensorProductPolynomialsBubbles<dim>::compute_grad(const unsigned int i,
       grad[d] = 1.;
       // compute grad(4*\prod_{i=1}^d (x_i(1-x_i)))(p)
       for (unsigned j = 0; j < dim; ++j)
-        grad[d] *= (d == j ? 4 * (1 - 2 * p(j)) : 4 * p(j) * (1 - p(j)));
+        grad[d] *= (d == j ? 4 * (1 - 2 * p[j]) : 4 * p[j] * (1 - p[j]));
       // and multiply with (2*x_i-1)^{r-1}
       for (unsigned int i = 0; i < q_degree - 1; ++i)
-        grad[d] *= 2 * p(comp) - 1;
+        grad[d] *= 2 * p[comp] - 1;
     }
 
   if (q_degree >= 2)
@@ -138,11 +138,11 @@ TensorProductPolynomialsBubbles<dim>::compute_grad(const unsigned int i,
       // add \prod_{i=1}^d 4*(x_i(1-x_i))(p)
       double value = 1.;
       for (unsigned int j = 0; j < dim; ++j)
-        value *= 4 * p(j) * (1 - p(j));
+        value *= 4 * p[j] * (1 - p[j]);
       // and multiply with grad(2*x_i-1)^{r-1}
       double tmp = value * 2 * (q_degree - 1);
       for (unsigned int i = 0; i < q_degree - 2; ++i)
-        tmp *= 2 * p(comp) - 1;
+        tmp *= 2 * p[comp] - 1;
       grad[comp] += tmp;
     }
 
@@ -172,21 +172,21 @@ TensorProductPolynomialsBubbles<dim>::compute_grad_grad(
   {
     for (unsigned int c = 0; c < dim; ++c)
       {
-        v[c][0] = 4 * p(c) * (1 - p(c));
-        v[c][1] = 4 * (1 - 2 * p(c));
+        v[c][0] = 4 * p[c] * (1 - p[c]);
+        v[c][1] = 4 * (1 - 2 * p[c]);
         v[c][2] = -8;
       }
 
     double tmp = 1.;
     for (unsigned int i = 0; i < q_degree - 1; ++i)
-      tmp *= 2 * p(comp) - 1;
+      tmp *= 2 * p[comp] - 1;
     v[dim][0] = tmp;
 
     if (q_degree >= 2)
       {
         double tmp = 2 * (q_degree - 1);
         for (unsigned int i = 0; i < q_degree - 2; ++i)
-          tmp *= 2 * p(comp) - 1;
+          tmp *= 2 * p[comp] - 1;
         v[dim][1] = tmp;
       }
     else
@@ -196,7 +196,7 @@ TensorProductPolynomialsBubbles<dim>::compute_grad_grad(
       {
         double tmp = 4 * (q_degree - 2) * (q_degree - 1);
         for (unsigned int i = 0; i < q_degree - 3; ++i)
-          tmp *= 2 * p(comp) - 1;
+          tmp *= 2 * p[comp] - 1;
         v[dim][2] = tmp;
       }
     else
index db48efebd4b84ad6b01f0d611e0a1a4f8e3250fc..66fd1f57768660abb140ab511bfab7c3ad8418ea 100644 (file)
@@ -91,7 +91,7 @@ namespace internal
         Assert(p.size() == k + 1, ExcDimensionMismatch(p.size(), k + 1));
         const double h = 1. / k;
         for (unsigned int i = 0; i < p.size(); ++i)
-          p[i](0) = i * h;
+          p[i][0] = i * h;
       }
 
       template <>
@@ -103,8 +103,8 @@ namespace internal
                ExcInternalError());
         for (unsigned int i = 0; i < p.size(); ++i)
           {
-            p[i](0) = points2d[start_index2d[k] + i][0];
-            p[i](1) = points2d[start_index2d[k] + i][1];
+            p[i][0] = points2d[start_index2d[k] + i][0];
+            p[i][1] = points2d[start_index2d[k] + i][1];
           }
       }
 
@@ -117,9 +117,9 @@ namespace internal
                ExcInternalError());
         for (unsigned int i = 0; i < p.size(); ++i)
           {
-            p[i](0) = points3d[start_index3d[k] + i][0];
-            p[i](1) = points3d[start_index3d[k] + i][1];
-            p[i](2) = points3d[start_index3d[k] + i][2];
+            p[i][0] = points3d[start_index3d[k] + i][0];
+            p[i][1] = points3d[start_index3d[k] + i][1];
+            p[i][2] = points3d[start_index3d[k] + i][2];
           }
       }
     } // namespace
index 7c7db61e47e32ba9f8cb3ab646e8a87a852889d8..3f24eb387584e0e2ebe12ddfd9222c9fb8418351 100644 (file)
@@ -890,7 +890,7 @@ FE_DGQArbitraryNodes<dim, spacedim>::get_name() const
   const QGaussLobatto<1> points_gl(this->degree + 1);
   bool                   gauss_lobatto = true;
   for (unsigned int j = 0; j <= this->degree; ++j)
-    if (points[j] != points_gl.point(j)(0))
+    if (points[j] != points_gl.point(j)[0])
       {
         gauss_lobatto = false;
         break;
@@ -907,7 +907,7 @@ FE_DGQArbitraryNodes<dim, spacedim>::get_name() const
   const QGauss<1> points_g(this->degree + 1);
   bool            gauss = true;
   for (unsigned int j = 0; j <= this->degree; ++j)
-    if (points[j] != points_g.point(j)(0))
+    if (points[j] != points_g.point(j)[0])
       {
         gauss = false;
         break;
@@ -924,7 +924,7 @@ FE_DGQArbitraryNodes<dim, spacedim>::get_name() const
   const QGaussLog<1> points_glog(this->degree + 1);
   bool               gauss_log = true;
   for (unsigned int j = 0; j <= this->degree; ++j)
-    if (points[j] != points_glog.point(j)(0))
+    if (points[j] != points_glog.point(j)[0])
       {
         gauss_log = false;
         break;
index a0667bac5ba9c91b4009321b8a38067b2a8a0ab5..96d40702664a3060407639df3c8be961ec34e025 100644 (file)
@@ -79,11 +79,11 @@ FE_FaceQ<dim, spacedim>::FE_FaceQ(const unsigned int degree)
             {
               Point<codim> p;
 
-              p(0) = points[ix][0];
+              p[0] = points[ix][0];
               if (codim > 1)
-                p(1) = points[iy][0];
+                p[1] = points[iy][0];
               if (codim > 2)
-                p(2) = points[iz][0];
+                p[2] = points[iz][0];
 
               this->unit_face_support_points[0][k++] = p;
             }
index 674082578bcfc8d8474b0c9819df4708db45f38d..3e5db68626dc7bf77f5913cca8c0bd9386de8f74 100644 (file)
@@ -338,7 +338,7 @@ FE_Nedelec<2>::initialize_support_points(const unsigned int order)
             boundary_weights(q_point, i) =
               reference_edge_quadrature.weight(q_point) *
               lobatto_polynomials_grad[i + 1].value(
-                this->generalized_face_support_points[face_no][q_point](0));
+                this->generalized_face_support_points[face_no][q_point][0]);
         }
 
       for (unsigned int q_point = 0; q_point < n_interior_points; ++q_point)
@@ -441,20 +441,20 @@ FE_Nedelec<3>::initialize_support_points(const unsigned int order)
               {
                 this->generalized_support_points[q_point +
                                                  (i + 4 * j) * n_edge_points] =
-                  Point<dim>(i, reference_edge_quadrature.point(q_point)(0), j);
+                  Point<dim>(i, reference_edge_quadrature.point(q_point)[0], j);
                 this->generalized_support_points[q_point + (i + 4 * j + 2) *
                                                              n_edge_points] =
-                  Point<dim>(reference_edge_quadrature.point(q_point)(0), i, j);
+                  Point<dim>(reference_edge_quadrature.point(q_point)[0], i, j);
                 this->generalized_support_points[q_point + (i + 2 * (j + 4)) *
                                                              n_edge_points] =
-                  Point<dim>(i, j, reference_edge_quadrature.point(q_point)(0));
+                  Point<dim>(i, j, reference_edge_quadrature.point(q_point)[0]);
               }
 
           for (unsigned int i = 0; i < order; ++i)
             boundary_weights(q_point, i) =
               reference_edge_quadrature.weight(q_point) *
               lobatto_polynomials_grad[i + 1].value(
-                this->generalized_face_support_points[face_no][q_point](1));
+                this->generalized_face_support_points[face_no][q_point][1]);
         }
 
       // Create support points on faces.
@@ -471,19 +471,19 @@ FE_Nedelec<3>::initialize_support_points(const unsigned int order)
                   reference_face_quadrature.weight(q_point) *
                   lobatto_polynomials_grad[i].value(
                     this->generalized_face_support_points
-                      [face_no][q_point + 4 * n_edge_points](0)) *
+                      [face_no][q_point + 4 * n_edge_points][0]) *
                   lobatto_polynomials[j + 2].value(
                     this->generalized_face_support_points
-                      [face_no][q_point + 4 * n_edge_points](1));
+                      [face_no][q_point + 4 * n_edge_points][1]);
                 boundary_weights(q_point + n_edge_points,
                                  2 * (i * order + j) + 1) =
                   reference_face_quadrature.weight(q_point) *
                   lobatto_polynomials_grad[i].value(
                     this->generalized_face_support_points
-                      [face_no][q_point + 4 * n_edge_points](1)) *
+                      [face_no][q_point + 4 * n_edge_points][1]) *
                   lobatto_polynomials[j + 2].value(
                     this->generalized_face_support_points
-                      [face_no][q_point + 4 * n_edge_points](0));
+                      [face_no][q_point + 4 * n_edge_points][0]);
               }
         }
 
@@ -542,13 +542,13 @@ FE_Nedelec<3>::initialize_support_points(const unsigned int order)
               {
                 this->generalized_support_points[q_point +
                                                  (i + 4 * j) * n_edge_points] =
-                  Point<dim>(i, reference_edge_quadrature.point(q_point)(0), j);
+                  Point<dim>(i, reference_edge_quadrature.point(q_point)[0], j);
                 this->generalized_support_points[q_point + (i + 4 * j + 2) *
                                                              n_edge_points] =
-                  Point<dim>(reference_edge_quadrature.point(q_point)(0), i, j);
+                  Point<dim>(reference_edge_quadrature.point(q_point)[0], i, j);
                 this->generalized_support_points[q_point + (i + 2 * (j + 4)) *
                                                              n_edge_points] =
-                  Point<dim>(i, j, reference_edge_quadrature.point(q_point)(0));
+                  Point<dim>(i, j, reference_edge_quadrature.point(q_point)[0]);
               }
         }
     }
@@ -600,24 +600,24 @@ FE_Nedelec<dim>::initialize_restriction()
               {
                 const double weight = 2.0 * edge_quadrature.weight(q_point);
 
-                if (edge_quadrature_points[q_point](0) < 0.5)
+                if (edge_quadrature_points[q_point][0] < 0.5)
                   {
                     Point<dim> quadrature_point(
-                      0.0, 2.0 * edge_quadrature_points[q_point](0));
+                      0.0, 2.0 * edge_quadrature_points[q_point][0]);
 
                     this->restriction[index][0](0, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 1);
-                    quadrature_point(0) = 1.0;
+                    quadrature_point[0] = 1.0;
                     this->restriction[index][1](this->degree, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 1);
-                    quadrature_point(0) = quadrature_point(1);
-                    quadrature_point(1) = 0.0;
+                    quadrature_point[0] = quadrature_point[1];
+                    quadrature_point[1] = 0.0;
                     this->restriction[index][0](2 * this->degree, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 0);
-                    quadrature_point(1) = 1.0;
+                    quadrature_point[1] = 1.0;
                     this->restriction[index][2](3 * this->degree, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 0);
@@ -626,21 +626,21 @@ FE_Nedelec<dim>::initialize_restriction()
                 else
                   {
                     Point<dim> quadrature_point(
-                      0.0, 2.0 * edge_quadrature_points[q_point](0) - 1.0);
+                      0.0, 2.0 * edge_quadrature_points[q_point][0] - 1.0);
 
                     this->restriction[index][2](0, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 1);
-                    quadrature_point(0) = 1.0;
+                    quadrature_point[0] = 1.0;
                     this->restriction[index][3](this->degree, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 1);
-                    quadrature_point(0) = quadrature_point(1);
-                    quadrature_point(1) = 0.0;
+                    quadrature_point[0] = quadrature_point[1];
+                    quadrature_point[1] = 0.0;
                     this->restriction[index][1](2 * this->degree, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 0);
-                    quadrature_point(1) = 1.0;
+                    quadrature_point[1] = 1.0;
                     this->restriction[index][3](3 * this->degree, dof) +=
                       weight *
                       this->shape_value_component(dof, quadrature_point, 0);
@@ -673,7 +673,7 @@ FE_Nedelec<dim>::initialize_restriction()
                     for (unsigned int i = 0; i < deg; ++i)
                       assembling_matrix(i, q_point) =
                         weight * legendre_polynomials[i + 1].value(
-                                   edge_quadrature_points[q_point](0));
+                                   edge_quadrature_points[q_point][0]);
                   }
 
                 FullMatrix<double> system_matrix(deg, deg);
@@ -697,14 +697,14 @@ FE_Nedelec<dim>::initialize_restriction()
                       {
                         const double weight = edge_quadrature.weight(q_point);
                         const Point<dim> quadrature_point_0(
-                          i, edge_quadrature_points[q_point](0));
+                          i, edge_quadrature_points[q_point][0]);
                         const Point<dim> quadrature_point_1(
-                          edge_quadrature_points[q_point](0), i);
+                          edge_quadrature_points[q_point][0], i);
 
-                        if (edge_quadrature_points[q_point](0) < 0.5)
+                        if (edge_quadrature_points[q_point][0] < 0.5)
                           {
                             Point<dim> quadrature_point_2(
-                              i, 2.0 * edge_quadrature_points[q_point](0));
+                              i, 2.0 * edge_quadrature_points[q_point][0]);
 
                             tmp(0) =
                               weight *
@@ -723,7 +723,7 @@ FE_Nedelec<dim>::initialize_restriction()
                                                           quadrature_point_0,
                                                           1);
                             quadrature_point_2 = Point<dim>(
-                              2.0 * edge_quadrature_points[q_point](0), i);
+                              2.0 * edge_quadrature_points[q_point][0], i);
                             tmp(2) =
                               weight *
                               (2.0 * this->shape_value_component(
@@ -755,7 +755,7 @@ FE_Nedelec<dim>::initialize_restriction()
 
                             Point<dim> quadrature_point_2(
                               i,
-                              2.0 * edge_quadrature_points[q_point](0) - 1.0);
+                              2.0 * edge_quadrature_points[q_point][0] - 1.0);
 
                             tmp(1) =
                               weight *
@@ -774,7 +774,7 @@ FE_Nedelec<dim>::initialize_restriction()
                               this->shape_value_component(
                                 (i + 2) * this->degree, quadrature_point_1, 0);
                             quadrature_point_2 = Point<dim>(
-                              2.0 * edge_quadrature_points[q_point](0) - 1.0,
+                              2.0 * edge_quadrature_points[q_point][0] - 1.0,
                               i);
                             tmp(3) =
                               weight *
@@ -792,7 +792,7 @@ FE_Nedelec<dim>::initialize_restriction()
                           {
                             const double L_j =
                               legendre_polynomials[j + 1].value(
-                                edge_quadrature_points[q_point](0));
+                                edge_quadrature_points[q_point][0]);
 
                             for (unsigned int k = 0; k < tmp.size(); ++k)
                               system_rhs(j, k) += tmp(k) * L_j;
@@ -839,13 +839,13 @@ FE_Nedelec<dim>::initialize_restriction()
                       {
                         const double L_i =
                           weight * legendre_polynomials[i].value(
-                                     quadrature_points[q_point](0));
+                                     quadrature_points[q_point][0]);
 
                         for (unsigned int j = 0; j < this->degree - 1; ++j)
                           assembling_matrix(i * (this->degree - 1) + j,
                                             q_point) =
                             L_i * lobatto_polynomials[j + 2].value(
-                                    quadrature_points[q_point](1));
+                                    quadrature_points[q_point][1]);
                       }
                   }
 
@@ -870,13 +870,13 @@ FE_Nedelec<dim>::initialize_restriction()
                     {
                       tmp = 0.0;
 
-                      if (quadrature_points[q_point](0) < 0.5)
+                      if (quadrature_points[q_point][0] < 0.5)
                         {
-                          if (quadrature_points[q_point](1) < 0.5)
+                          if (quadrature_points[q_point][1] < 0.5)
                             {
                               const Point<dim> quadrature_point(
-                                2.0 * quadrature_points[q_point](0),
-                                2.0 * quadrature_points[q_point](1));
+                                2.0 * quadrature_points[q_point][0],
+                                2.0 * quadrature_points[q_point][1]);
 
                               tmp(0) += 2.0 * this->shape_value_component(
                                                 dof, quadrature_point, 0);
@@ -887,8 +887,8 @@ FE_Nedelec<dim>::initialize_restriction()
                           else
                             {
                               const Point<dim> quadrature_point(
-                                2.0 * quadrature_points[q_point](0),
-                                2.0 * quadrature_points[q_point](1) - 1.0);
+                                2.0 * quadrature_points[q_point][0],
+                                2.0 * quadrature_points[q_point][1] - 1.0);
 
                               tmp(4) += 2.0 * this->shape_value_component(
                                                 dof, quadrature_point, 0);
@@ -897,11 +897,11 @@ FE_Nedelec<dim>::initialize_restriction()
                             }
                         }
 
-                      else if (quadrature_points[q_point](1) < 0.5)
+                      else if (quadrature_points[q_point][1] < 0.5)
                         {
                           const Point<dim> quadrature_point(
-                            2.0 * quadrature_points[q_point](0) - 1.0,
-                            2.0 * quadrature_points[q_point](1));
+                            2.0 * quadrature_points[q_point][0] - 1.0,
+                            2.0 * quadrature_points[q_point][1]);
 
                           tmp(2) +=
                             2.0 * this->shape_value_component(dof,
@@ -916,8 +916,8 @@ FE_Nedelec<dim>::initialize_restriction()
                       else
                         {
                           const Point<dim> quadrature_point(
-                            2.0 * quadrature_points[q_point](0) - 1.0,
-                            2.0 * quadrature_points[q_point](1) - 1.0);
+                            2.0 * quadrature_points[q_point][0] - 1.0,
+                            2.0 * quadrature_points[q_point][1] - 1.0);
 
                           tmp(6) +=
                             2.0 * this->shape_value_component(dof,
@@ -965,18 +965,18 @@ FE_Nedelec<dim>::initialize_restriction()
                       for (unsigned int i = 0; i < this->degree; ++i)
                         {
                           const double L_i_0 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](0));
+                            quadrature_points[q_point][0]);
                           const double L_i_1 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](1));
+                            quadrature_points[q_point][1]);
 
                           for (unsigned int j = 0; j < this->degree - 1; ++j)
                             {
                               const double l_j_0 =
                                 L_i_0 * lobatto_polynomials[j + 2].value(
-                                          quadrature_points[q_point](1));
+                                          quadrature_points[q_point][1]);
                               const double l_j_1 =
                                 L_i_1 * lobatto_polynomials[j + 2].value(
-                                          quadrature_points[q_point](0));
+                                          quadrature_points[q_point][0]);
 
                               for (unsigned int k = 0; k < 4; ++k)
                                 {
@@ -1029,12 +1029,12 @@ FE_Nedelec<dim>::initialize_restriction()
               {
                 const double weight = 2.0 * edge_quadrature.weight(q_point);
 
-                if (edge_quadrature_points[q_point](0) < 0.5)
+                if (edge_quadrature_points[q_point][0] < 0.5)
                   for (unsigned int i = 0; i < 2; ++i)
                     for (unsigned int j = 0; j < 2; ++j)
                       {
                         Point<dim> quadrature_point(
-                          i, 2.0 * edge_quadrature_points[q_point](0), j);
+                          i, 2.0 * edge_quadrature_points[q_point][0], j);
 
                         this->restriction[index][i + 4 * j]((i + 4 * j) *
                                                               this->degree,
@@ -1042,7 +1042,7 @@ FE_Nedelec<dim>::initialize_restriction()
                           weight *
                           this->shape_value_component(dof, quadrature_point, 1);
                         quadrature_point =
-                          Point<dim>(2.0 * edge_quadrature_points[q_point](0),
+                          Point<dim>(2.0 * edge_quadrature_points[q_point][0],
                                      i,
                                      j);
                         this->restriction[index][2 * (i + 2 * j)](
@@ -1052,7 +1052,7 @@ FE_Nedelec<dim>::initialize_restriction()
                         quadrature_point =
                           Point<dim>(i,
                                      j,
-                                     2.0 * edge_quadrature_points[q_point](0));
+                                     2.0 * edge_quadrature_points[q_point][0]);
                         this->restriction[index][i + 2 * j]((i + 2 * (j + 4)) *
                                                               this->degree,
                                                             dof) +=
@@ -1065,7 +1065,7 @@ FE_Nedelec<dim>::initialize_restriction()
                     for (unsigned int j = 0; j < 2; ++j)
                       {
                         Point<dim> quadrature_point(
-                          i, 2.0 * edge_quadrature_points[q_point](0) - 1.0, j);
+                          i, 2.0 * edge_quadrature_points[q_point][0] - 1.0, j);
 
                         this->restriction[index][i + 4 * j + 2]((i + 4 * j) *
                                                                   this->degree,
@@ -1073,13 +1073,13 @@ FE_Nedelec<dim>::initialize_restriction()
                           weight *
                           this->shape_value_component(dof, quadrature_point, 1);
                         quadrature_point = Point<dim>(
-                          2.0 * edge_quadrature_points[q_point](0) - 1.0, i, j);
+                          2.0 * edge_quadrature_points[q_point][0] - 1.0, i, j);
                         this->restriction[index][2 * (i + 2 * j) + 1](
                           (i + 4 * j + 2) * this->degree, dof) +=
                           weight *
                           this->shape_value_component(dof, quadrature_point, 0);
                         quadrature_point = Point<dim>(
-                          i, j, 2.0 * edge_quadrature_points[q_point](0) - 1.0);
+                          i, j, 2.0 * edge_quadrature_points[q_point][0] - 1.0);
                         this->restriction[index][i + 2 * (j + 2)](
                           (i + 2 * (j + 4)) * this->degree, dof) +=
                           weight *
@@ -1113,7 +1113,7 @@ FE_Nedelec<dim>::initialize_restriction()
                     for (unsigned int i = 0; i < deg; ++i)
                       assembling_matrix(i, q_point) =
                         weight * legendre_polynomials[i + 1].value(
-                                   edge_quadrature_points[q_point](0));
+                                   edge_quadrature_points[q_point][0]);
                   }
 
                 FullMatrix<double> system_matrix(deg, deg);
@@ -1139,16 +1139,16 @@ FE_Nedelec<dim>::initialize_restriction()
                         {
                           const double weight = edge_quadrature.weight(q_point);
                           const Point<dim> quadrature_point_0(
-                            i, edge_quadrature_points[q_point](0), j);
+                            i, edge_quadrature_points[q_point][0], j);
                           const Point<dim> quadrature_point_1(
-                            edge_quadrature_points[q_point](0), i, j);
+                            edge_quadrature_points[q_point][0], i, j);
                           const Point<dim> quadrature_point_2(
-                            i, j, edge_quadrature_points[q_point](0));
+                            i, j, edge_quadrature_points[q_point][0]);
 
-                          if (edge_quadrature_points[q_point](0) < 0.5)
+                          if (edge_quadrature_points[q_point][0] < 0.5)
                             {
                               Point<dim> quadrature_point_3(
-                                i, 2.0 * edge_quadrature_points[q_point](0), j);
+                                i, 2.0 * edge_quadrature_points[q_point][0], j);
 
                               tmp(0) =
                                 weight * (2.0 * this->shape_value_component(
@@ -1168,7 +1168,7 @@ FE_Nedelec<dim>::initialize_restriction()
                                                             quadrature_point_0,
                                                             1);
                               quadrature_point_3 = Point<dim>(
-                                2.0 * edge_quadrature_points[q_point](0), i, j);
+                                2.0 * edge_quadrature_points[q_point][0], i, j);
                               tmp(2) =
                                 weight *
                                 (2.0 * this->shape_value_component(
@@ -1188,7 +1188,7 @@ FE_Nedelec<dim>::initialize_restriction()
                                                             quadrature_point_1,
                                                             0);
                               quadrature_point_3 = Point<dim>(
-                                i, j, 2.0 * edge_quadrature_points[q_point](0));
+                                i, j, 2.0 * edge_quadrature_points[q_point][0]);
                               tmp(4) =
                                 weight *
                                 (2.0 * this->shape_value_component(
@@ -1222,7 +1222,7 @@ FE_Nedelec<dim>::initialize_restriction()
 
                               Point<dim> quadrature_point_3(
                                 i,
-                                2.0 * edge_quadrature_points[q_point](0) - 1.0,
+                                2.0 * edge_quadrature_points[q_point][0] - 1.0,
                                 j);
 
                               tmp(1) = weight *
@@ -1243,7 +1243,7 @@ FE_Nedelec<dim>::initialize_restriction()
                                                             quadrature_point_1,
                                                             0);
                               quadrature_point_3 = Point<dim>(
-                                2.0 * edge_quadrature_points[q_point](0) - 1.0,
+                                2.0 * edge_quadrature_points[q_point][0] - 1.0,
                                 i,
                                 j);
                               tmp(3) =
@@ -1267,7 +1267,7 @@ FE_Nedelec<dim>::initialize_restriction()
                               quadrature_point_3 = Point<dim>(
                                 i,
                                 j,
-                                2.0 * edge_quadrature_points[q_point](0) - 1.0);
+                                2.0 * edge_quadrature_points[q_point][0] - 1.0);
                               tmp(5) =
                                 weight *
                                 (2.0 * this->shape_value_component(
@@ -1284,7 +1284,7 @@ FE_Nedelec<dim>::initialize_restriction()
                             {
                               const double L_k =
                                 legendre_polynomials[k + 1].value(
-                                  edge_quadrature_points[q_point](0));
+                                  edge_quadrature_points[q_point][0]);
 
                               for (unsigned int l = 0; l < tmp.size(); ++l)
                                 system_rhs(k, l) += tmp(l) * L_k;
@@ -1339,12 +1339,12 @@ FE_Nedelec<dim>::initialize_restriction()
                       {
                         const double L_i =
                           weight * legendre_polynomials[i].value(
-                                     face_quadrature_points[q_point](0));
+                                     face_quadrature_points[q_point][0]);
 
                         for (unsigned int j = 0; j < deg; ++j)
                           assembling_matrix(i * deg + j, q_point) =
                             L_i * lobatto_polynomials[j + 2].value(
-                                    face_quadrature_points[q_point](1));
+                                    face_quadrature_points[q_point][1]);
                       }
                   }
 
@@ -1371,30 +1371,30 @@ FE_Nedelec<dim>::initialize_restriction()
                       {
                         tmp = 0.0;
 
-                        if (face_quadrature_points[q_point](0) < 0.5)
+                        if (face_quadrature_points[q_point][0] < 0.5)
                           {
-                            if (face_quadrature_points[q_point](1) < 0.5)
+                            if (face_quadrature_points[q_point][1] < 0.5)
                               {
                                 Point<dim> quadrature_point_0(
                                   i,
-                                  2.0 * face_quadrature_points[q_point](0),
-                                  2.0 * face_quadrature_points[q_point](1));
+                                  2.0 * face_quadrature_points[q_point][0],
+                                  2.0 * face_quadrature_points[q_point][1]);
 
                                 tmp(0) += 2.0 * this->shape_value_component(
                                                   dof, quadrature_point_0, 1);
                                 tmp(1) += 2.0 * this->shape_value_component(
                                                   dof, quadrature_point_0, 2);
                                 quadrature_point_0 = Point<dim>(
-                                  2.0 * face_quadrature_points[q_point](0),
+                                  2.0 * face_quadrature_points[q_point][0],
                                   i,
-                                  2.0 * face_quadrature_points[q_point](1));
+                                  2.0 * face_quadrature_points[q_point][1]);
                                 tmp(8) += 2.0 * this->shape_value_component(
                                                   dof, quadrature_point_0, 2);
                                 tmp(9) += 2.0 * this->shape_value_component(
                                                   dof, quadrature_point_0, 0);
                                 quadrature_point_0 = Point<dim>(
-                                  2.0 * face_quadrature_points[q_point](0),
-                                  2.0 * face_quadrature_points[q_point](1),
+                                  2.0 * face_quadrature_points[q_point][0],
+                                  2.0 * face_quadrature_points[q_point][1],
                                   i);
                                 tmp(16) += 2.0 * this->shape_value_component(
                                                    dof, quadrature_point_0, 0);
@@ -1406,8 +1406,8 @@ FE_Nedelec<dim>::initialize_restriction()
                               {
                                 Point<dim> quadrature_point_0(
                                   i,
-                                  2.0 * face_quadrature_points[q_point](0),
-                                  2.0 * face_quadrature_points[q_point](1) -
+                                  2.0 * face_quadrature_points[q_point][0],
+                                  2.0 * face_quadrature_points[q_point][1] -
                                     1.0);
 
                                 tmp(2) += 2.0 * this->shape_value_component(
@@ -1415,17 +1415,17 @@ FE_Nedelec<dim>::initialize_restriction()
                                 tmp(3) += 2.0 * this->shape_value_component(
                                                   dof, quadrature_point_0, 2);
                                 quadrature_point_0 = Point<dim>(
-                                  2.0 * face_quadrature_points[q_point](0),
+                                  2.0 * face_quadrature_points[q_point][0],
                                   i,
-                                  2.0 * face_quadrature_points[q_point](1) -
+                                  2.0 * face_quadrature_points[q_point][1] -
                                     1.0);
                                 tmp(10) += 2.0 * this->shape_value_component(
                                                    dof, quadrature_point_0, 2);
                                 tmp(11) += 2.0 * this->shape_value_component(
                                                    dof, quadrature_point_0, 0);
                                 quadrature_point_0 = Point<dim>(
-                                  2.0 * face_quadrature_points[q_point](0),
-                                  2.0 * face_quadrature_points[q_point](1) -
+                                  2.0 * face_quadrature_points[q_point][0],
+                                  2.0 * face_quadrature_points[q_point][1] -
                                     1.0,
                                   i);
                                 tmp(18) += 2.0 * this->shape_value_component(
@@ -1435,28 +1435,28 @@ FE_Nedelec<dim>::initialize_restriction()
                               }
                           }
 
-                        else if (face_quadrature_points[q_point](1) < 0.5)
+                        else if (face_quadrature_points[q_point][1] < 0.5)
                           {
                             Point<dim> quadrature_point_0(
                               i,
-                              2.0 * face_quadrature_points[q_point](0) - 1.0,
-                              2.0 * face_quadrature_points[q_point](1));
+                              2.0 * face_quadrature_points[q_point][0] - 1.0,
+                              2.0 * face_quadrature_points[q_point][1]);
 
                             tmp(4) += 2.0 * this->shape_value_component(
                                               dof, quadrature_point_0, 1);
                             tmp(5) += 2.0 * this->shape_value_component(
                                               dof, quadrature_point_0, 2);
                             quadrature_point_0 = Point<dim>(
-                              2.0 * face_quadrature_points[q_point](0) - 1.0,
+                              2.0 * face_quadrature_points[q_point][0] - 1.0,
                               i,
-                              2.0 * face_quadrature_points[q_point](1));
+                              2.0 * face_quadrature_points[q_point][1]);
                             tmp(12) += 2.0 * this->shape_value_component(
                                                dof, quadrature_point_0, 2);
                             tmp(13) += 2.0 * this->shape_value_component(
                                                dof, quadrature_point_0, 0);
                             quadrature_point_0 = Point<dim>(
-                              2.0 * face_quadrature_points[q_point](0) - 1.0,
-                              2.0 * face_quadrature_points[q_point](1),
+                              2.0 * face_quadrature_points[q_point][0] - 1.0,
+                              2.0 * face_quadrature_points[q_point][1],
                               i);
                             tmp(20) += 2.0 * this->shape_value_component(
                                                dof, quadrature_point_0, 0);
@@ -1468,24 +1468,24 @@ FE_Nedelec<dim>::initialize_restriction()
                           {
                             Point<dim> quadrature_point_0(
                               i,
-                              2.0 * face_quadrature_points[q_point](0) - 1.0,
-                              2.0 * face_quadrature_points[q_point](1) - 1.0);
+                              2.0 * face_quadrature_points[q_point][0] - 1.0,
+                              2.0 * face_quadrature_points[q_point][1] - 1.0);
 
                             tmp(6) += 2.0 * this->shape_value_component(
                                               dof, quadrature_point_0, 1);
                             tmp(7) += 2.0 * this->shape_value_component(
                                               dof, quadrature_point_0, 2);
                             quadrature_point_0 = Point<dim>(
-                              2.0 * face_quadrature_points[q_point](0) - 1.0,
+                              2.0 * face_quadrature_points[q_point][0] - 1.0,
                               i,
-                              2.0 * face_quadrature_points[q_point](1) - 1.0);
+                              2.0 * face_quadrature_points[q_point][1] - 1.0);
                             tmp(14) += 2.0 * this->shape_value_component(
                                                dof, quadrature_point_0, 2);
                             tmp(15) += 2.0 * this->shape_value_component(
                                                dof, quadrature_point_0, 0);
                             quadrature_point_0 = Point<dim>(
-                              2.0 * face_quadrature_points[q_point](0) - 1.0,
-                              2.0 * face_quadrature_points[q_point](1) - 1.0,
+                              2.0 * face_quadrature_points[q_point][0] - 1.0,
+                              2.0 * face_quadrature_points[q_point][1] - 1.0,
                               i);
                             tmp(22) += 2.0 * this->shape_value_component(
                                                dof, quadrature_point_0, 0);
@@ -1495,15 +1495,15 @@ FE_Nedelec<dim>::initialize_restriction()
 
                         const Point<dim> quadrature_point_0(
                           i,
-                          face_quadrature_points[q_point](0),
-                          face_quadrature_points[q_point](1));
+                          face_quadrature_points[q_point][0],
+                          face_quadrature_points[q_point][1]);
                         const Point<dim> quadrature_point_1(
-                          face_quadrature_points[q_point](0),
+                          face_quadrature_points[q_point][0],
                           i,
-                          face_quadrature_points[q_point](1));
+                          face_quadrature_points[q_point][1]);
                         const Point<dim> quadrature_point_2(
-                          face_quadrature_points[q_point](0),
-                          face_quadrature_points[q_point](1),
+                          face_quadrature_points[q_point][0],
+                          face_quadrature_points[q_point][1],
                           i);
 
                         for (unsigned int j = 0; j < 2; ++j)
@@ -1559,18 +1559,18 @@ FE_Nedelec<dim>::initialize_restriction()
                         for (unsigned int j = 0; j <= deg; ++j)
                           {
                             const double L_j_0 = legendre_polynomials[j].value(
-                              face_quadrature_points[q_point](0));
+                              face_quadrature_points[q_point][0]);
                             const double L_j_1 = legendre_polynomials[j].value(
-                              face_quadrature_points[q_point](1));
+                              face_quadrature_points[q_point][1]);
 
                             for (unsigned int k = 0; k < deg; ++k)
                               {
                                 const double l_k_0 =
                                   L_j_0 * lobatto_polynomials[k + 2].value(
-                                            face_quadrature_points[q_point](1));
+                                            face_quadrature_points[q_point][1]);
                                 const double l_k_1 =
                                   L_j_1 * lobatto_polynomials[k + 2].value(
-                                            face_quadrature_points[q_point](0));
+                                            face_quadrature_points[q_point][0]);
 
                                 for (unsigned int l = 0; l < 4; ++l)
                                   {
@@ -1673,19 +1673,19 @@ FE_Nedelec<dim>::initialize_restriction()
                       {
                         const double L_i =
                           weight * legendre_polynomials[i].value(
-                                     quadrature_points[q_point](0));
+                                     quadrature_points[q_point][0]);
 
                         for (unsigned int j = 0; j < deg; ++j)
                           {
                             const double l_j =
                               L_i * lobatto_polynomials[j + 2].value(
-                                      quadrature_points[q_point](1));
+                                      quadrature_points[q_point][1]);
 
                             for (unsigned int k = 0; k < deg; ++k)
                               assembling_matrix((i * deg + j) * deg + k,
                                                 q_point) =
                                 l_j * lobatto_polynomials[k + 2].value(
-                                        quadrature_points[q_point](2));
+                                        quadrature_points[q_point][2]);
                           }
                       }
                   }
@@ -1711,16 +1711,16 @@ FE_Nedelec<dim>::initialize_restriction()
                     {
                       tmp = 0.0;
 
-                      if (quadrature_points[q_point](0) < 0.5)
+                      if (quadrature_points[q_point][0] < 0.5)
                         {
-                          if (quadrature_points[q_point](1) < 0.5)
+                          if (quadrature_points[q_point][1] < 0.5)
                             {
-                              if (quadrature_points[q_point](2) < 0.5)
+                              if (quadrature_points[q_point][2] < 0.5)
                                 {
                                   const Point<dim> quadrature_point(
-                                    2.0 * quadrature_points[q_point](0),
-                                    2.0 * quadrature_points[q_point](1),
-                                    2.0 * quadrature_points[q_point](2));
+                                    2.0 * quadrature_points[q_point][0],
+                                    2.0 * quadrature_points[q_point][1],
+                                    2.0 * quadrature_points[q_point][2]);
 
                                   tmp(0) += 2.0 * this->shape_value_component(
                                                     dof, quadrature_point, 0);
@@ -1733,9 +1733,9 @@ FE_Nedelec<dim>::initialize_restriction()
                               else
                                 {
                                   const Point<dim> quadrature_point(
-                                    2.0 * quadrature_points[q_point](0),
-                                    2.0 * quadrature_points[q_point](1),
-                                    2.0 * quadrature_points[q_point](2) - 1.0);
+                                    2.0 * quadrature_points[q_point][0],
+                                    2.0 * quadrature_points[q_point][1],
+                                    2.0 * quadrature_points[q_point][2] - 1.0);
 
                                   tmp(3) += 2.0 * this->shape_value_component(
                                                     dof, quadrature_point, 0);
@@ -1746,12 +1746,12 @@ FE_Nedelec<dim>::initialize_restriction()
                                 }
                             }
 
-                          else if (quadrature_points[q_point](2) < 0.5)
+                          else if (quadrature_points[q_point][2] < 0.5)
                             {
                               const Point<dim> quadrature_point(
-                                2.0 * quadrature_points[q_point](0),
-                                2.0 * quadrature_points[q_point](1) - 1.0,
-                                2.0 * quadrature_points[q_point](2));
+                                2.0 * quadrature_points[q_point][0],
+                                2.0 * quadrature_points[q_point][1] - 1.0,
+                                2.0 * quadrature_points[q_point][2]);
 
                               tmp(6) += 2.0 * this->shape_value_component(
                                                 dof, quadrature_point, 0);
@@ -1764,9 +1764,9 @@ FE_Nedelec<dim>::initialize_restriction()
                           else
                             {
                               const Point<dim> quadrature_point(
-                                2.0 * quadrature_points[q_point](0),
-                                2.0 * quadrature_points[q_point](1) - 1.0,
-                                2.0 * quadrature_points[q_point](2) - 1.0);
+                                2.0 * quadrature_points[q_point][0],
+                                2.0 * quadrature_points[q_point][1] - 1.0,
+                                2.0 * quadrature_points[q_point][2] - 1.0);
 
                               tmp(9) += 2.0 * this->shape_value_component(
                                                 dof, quadrature_point, 0);
@@ -1777,14 +1777,14 @@ FE_Nedelec<dim>::initialize_restriction()
                             }
                         }
 
-                      else if (quadrature_points[q_point](1) < 0.5)
+                      else if (quadrature_points[q_point][1] < 0.5)
                         {
-                          if (quadrature_points[q_point](2) < 0.5)
+                          if (quadrature_points[q_point][2] < 0.5)
                             {
                               const Point<dim> quadrature_point(
-                                2.0 * quadrature_points[q_point](0) - 1.0,
-                                2.0 * quadrature_points[q_point](1),
-                                2.0 * quadrature_points[q_point](2));
+                                2.0 * quadrature_points[q_point][0] - 1.0,
+                                2.0 * quadrature_points[q_point][1],
+                                2.0 * quadrature_points[q_point][2]);
 
                               tmp(12) += 2.0 * this->shape_value_component(
                                                  dof, quadrature_point, 0);
@@ -1797,9 +1797,9 @@ FE_Nedelec<dim>::initialize_restriction()
                           else
                             {
                               const Point<dim> quadrature_point(
-                                2.0 * quadrature_points[q_point](0) - 1.0,
-                                2.0 * quadrature_points[q_point](1),
-                                2.0 * quadrature_points[q_point](2) - 1.0);
+                                2.0 * quadrature_points[q_point][0] - 1.0,
+                                2.0 * quadrature_points[q_point][1],
+                                2.0 * quadrature_points[q_point][2] - 1.0);
 
                               tmp(15) += 2.0 * this->shape_value_component(
                                                  dof, quadrature_point, 0);
@@ -1810,12 +1810,12 @@ FE_Nedelec<dim>::initialize_restriction()
                             }
                         }
 
-                      else if (quadrature_points[q_point](2) < 0.5)
+                      else if (quadrature_points[q_point][2] < 0.5)
                         {
                           const Point<dim> quadrature_point(
-                            2.0 * quadrature_points[q_point](0) - 1.0,
-                            2.0 * quadrature_points[q_point](1) - 1.0,
-                            2.0 * quadrature_points[q_point](2));
+                            2.0 * quadrature_points[q_point][0] - 1.0,
+                            2.0 * quadrature_points[q_point][1] - 1.0,
+                            2.0 * quadrature_points[q_point][2]);
 
                           tmp(18) +=
                             2.0 * this->shape_value_component(dof,
@@ -1834,9 +1834,9 @@ FE_Nedelec<dim>::initialize_restriction()
                       else
                         {
                           const Point<dim> quadrature_point(
-                            2.0 * quadrature_points[q_point](0) - 1.0,
-                            2.0 * quadrature_points[q_point](1) - 1.0,
-                            2.0 * quadrature_points[q_point](2) - 1.0);
+                            2.0 * quadrature_points[q_point][0] - 1.0,
+                            2.0 * quadrature_points[q_point][1] - 1.0,
+                            2.0 * quadrature_points[q_point][2] - 1.0);
 
                           tmp(21) +=
                             2.0 * this->shape_value_component(dof,
@@ -1955,35 +1955,35 @@ FE_Nedelec<dim>::initialize_restriction()
                       for (unsigned int i = 0; i <= deg; ++i)
                         {
                           const double L_i_0 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](0));
+                            quadrature_points[q_point][0]);
                           const double L_i_1 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](1));
+                            quadrature_points[q_point][1]);
                           const double L_i_2 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](2));
+                            quadrature_points[q_point][2]);
 
                           for (unsigned int j = 0; j < deg; ++j)
                             {
                               const double l_j_0 =
                                 L_i_0 * lobatto_polynomials[j + 2].value(
-                                          quadrature_points[q_point](1));
+                                          quadrature_points[q_point][1]);
                               const double l_j_1 =
                                 L_i_1 * lobatto_polynomials[j + 2].value(
-                                          quadrature_points[q_point](0));
+                                          quadrature_points[q_point][0]);
                               const double l_j_2 =
                                 L_i_2 * lobatto_polynomials[j + 2].value(
-                                          quadrature_points[q_point](0));
+                                          quadrature_points[q_point][0]);
 
                               for (unsigned int k = 0; k < deg; ++k)
                                 {
                                   const double l_k_0 =
                                     l_j_0 * lobatto_polynomials[k + 2].value(
-                                              quadrature_points[q_point](2));
+                                              quadrature_points[q_point][2]);
                                   const double l_k_1 =
                                     l_j_1 * lobatto_polynomials[k + 2].value(
-                                              quadrature_points[q_point](2));
+                                              quadrature_points[q_point][2]);
                                   const double l_k_2 =
                                     l_j_2 * lobatto_polynomials[k + 2].value(
-                                              quadrature_points[q_point](1));
+                                              quadrature_points[q_point][1]);
 
                                   for (unsigned int l = 0; l < 8; ++l)
                                     {
@@ -2643,7 +2643,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                  ++q_point)
               {
                 const Point<dim> quadrature_point(
-                  0.0, 0.5 * (edge_quadrature_points[q_point](0) + subface));
+                  0.0, 0.5 * (edge_quadrature_points[q_point][0] + subface));
 
                 interpolation_matrix(0, dof) +=
                   0.5 * edge_quadrature.weight(q_point) *
@@ -2673,7 +2673,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                     for (unsigned int i = 0; i < source_fe.degree - 1; ++i)
                       assembling_matrix(i, q_point) =
                         weight * legendre_polynomials[i + 1].value(
-                                   edge_quadrature_points[q_point](0));
+                                   edge_quadrature_points[q_point][0]);
                   }
 
                 FullMatrix<double> system_matrix(source_fe.degree - 1,
@@ -2697,9 +2697,9 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                     {
                       const Point<dim> quadrature_point_0(
                         0.0,
-                        0.5 * (edge_quadrature_points[q_point](0) + subface));
+                        0.5 * (edge_quadrature_points[q_point][0] + subface));
                       const Point<dim> quadrature_point_1(
-                        0.0, edge_quadrature_points[q_point](0));
+                        0.0, edge_quadrature_points[q_point][0]);
                       const double tmp =
                         edge_quadrature.weight(q_point) *
                         (0.5 * this->shape_value_component(dof,
@@ -2713,7 +2713,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                       for (unsigned int i = 0; i < source_fe.degree - 1; ++i)
                         system_rhs(i) +=
                           tmp * legendre_polynomials[i + 1].value(
-                                  edge_quadrature_points[q_point](0));
+                                  edge_quadrature_points[q_point][0]);
                     }
 
                   system_matrix_inv.vmult(solution, system_rhs);
@@ -2745,7 +2745,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                   {
                     Point<dim> quadrature_point(
                       0.5 * (i + shifts[subface][0]),
-                      0.5 * (edge_quadrature_points[q_point](0) +
+                      0.5 * (edge_quadrature_points[q_point][0] +
                              shifts[subface][1]),
                       0.0);
 
@@ -2754,7 +2754,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                       this->shape_value_component(
                         this->face_to_cell_index(dof, 4), quadrature_point, 1);
                     quadrature_point =
-                      Point<dim>(0.5 * (edge_quadrature_points[q_point](0) +
+                      Point<dim>(0.5 * (edge_quadrature_points[q_point][0] +
                                         shifts[subface][0]),
                                  0.5 * (i + shifts[subface][1]),
                                  0.0);
@@ -2788,7 +2788,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                     for (unsigned int i = 0; i < source_fe.degree - 1; ++i)
                       assembling_matrix(i, q_point) =
                         weight * legendre_polynomials[i + 1].value(
-                                   edge_quadrature_points[q_point](0));
+                                   edge_quadrature_points[q_point][0]);
                   }
 
                 FullMatrix<double> system_matrix(source_fe.degree - 1,
@@ -2819,11 +2819,11 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                         {
                           Point<dim> quadrature_point_0(
                             0.5 * (i + shifts[subface][0]),
-                            0.5 * (edge_quadrature_points[q_point](0) +
+                            0.5 * (edge_quadrature_points[q_point][0] +
                                    shifts[subface][1]),
                             0.0);
                           Point<dim> quadrature_point_1(
-                            i, edge_quadrature_points[q_point](0), 0.0);
+                            i, edge_quadrature_points[q_point][0], 0.0);
 
                           tmp(i) =
                             weight *
@@ -2836,12 +2836,12 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                                  i * source_fe.degree, quadrature_point_1, 1));
                           quadrature_point_0 =
                             Point<dim>(0.5 *
-                                         (edge_quadrature_points[q_point](0) +
+                                         (edge_quadrature_points[q_point][0] +
                                           shifts[subface][0]),
                                        0.5 * (i + shifts[subface][1]),
                                        0.0);
                           quadrature_point_1 =
-                            Point<dim>(edge_quadrature_points[q_point](0),
+                            Point<dim>(edge_quadrature_points[q_point][0],
                                        i,
                                        0.0);
                           tmp(i + 2) =
@@ -2861,7 +2861,7 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                       for (unsigned int i = 0; i < source_fe.degree - 1; ++i)
                         {
                           const double L_i = legendre_polynomials[i + 1].value(
-                            edge_quadrature_points[q_point](0));
+                            edge_quadrature_points[q_point][0]);
 
                           for (unsigned int j = 0;
                                j < GeometryInfo<dim>::lines_per_face;
@@ -2906,13 +2906,13 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                       {
                         const double L_i =
                           weight * legendre_polynomials[i].value(
-                                     quadrature_points[q_point](0));
+                                     quadrature_points[q_point][0]);
 
                         for (unsigned int j = 0; j < source_fe.degree - 1; ++j)
                           assembling_matrix(i * (source_fe.degree - 1) + j,
                                             q_point) =
                             L_i * lobatto_polynomials[j + 2].value(
-                                    quadrature_points[q_point](1));
+                                    quadrature_points[q_point][1]);
                       }
                   }
 
@@ -2938,9 +2938,9 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                     {
                       Point<dim> quadrature_point(
                         0.5 *
-                          (quadrature_points[q_point](0) + shifts[subface][0]),
+                          (quadrature_points[q_point][0] + shifts[subface][0]),
                         0.5 *
-                          (quadrature_points[q_point](1) + shifts[subface][1]),
+                          (quadrature_points[q_point][1] + shifts[subface][1]),
                         0.0);
                       tmp(0) = 0.5 * this->shape_value_component(
                                        this->face_to_cell_index(dof, 4),
@@ -2951,8 +2951,8 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                                        quadrature_point,
                                        1);
                       quadrature_point =
-                        Point<dim>(quadrature_points[q_point](0),
-                                   quadrature_points[q_point](1),
+                        Point<dim>(quadrature_points[q_point][0],
+                                   quadrature_points[q_point][1],
                                    0.0);
 
                       for (unsigned int i = 0; i < 2; ++i)
@@ -2976,9 +2976,9 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                       for (unsigned int i = 0; i < source_fe.degree; ++i)
                         {
                           const double L_i_0 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](0));
+                            quadrature_points[q_point][0]);
                           const double L_i_1 = legendre_polynomials[i].value(
-                            quadrature_points[q_point](1));
+                            quadrature_points[q_point][1]);
 
                           for (unsigned int j = 0; j < source_fe.degree - 1;
                                ++j)
@@ -2986,11 +2986,11 @@ FE_Nedelec<dim>::get_subface_interpolation_matrix(
                               system_rhs(i * (source_fe.degree - 1) + j, 0) +=
                                 tmp(0) * L_i_0 *
                                 lobatto_polynomials[j + 2].value(
-                                  quadrature_points[q_point](1));
+                                  quadrature_points[q_point][1]);
                               system_rhs(i * (source_fe.degree - 1) + j, 1) +=
                                 tmp(1) * L_i_1 *
                                 lobatto_polynomials[j + 2].value(
-                                  quadrature_points[q_point](0));
+                                  quadrature_points[q_point][0]);
                             }
                         }
                     }
@@ -3228,8 +3228,8 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                     system_matrix(i, j) +=
                       boundary_weights(q_point, j) *
                       lobatto_polynomials_grad[i + 1].value(
-                        this->generalized_face_support_points[face_no][q_point](
-                          0));
+                        this->generalized_face_support_points[face_no][q_point]
+                                                             [0]);
 
               FullMatrix<double> system_matrix_inv(this->degree - 1,
                                                    this->degree - 1);
@@ -3311,19 +3311,19 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                           legendre_polynomials[i].value(
                             this->generalized_support_points
                               [q_point + GeometryInfo<dim>::lines_per_cell *
-                                           n_edge_points](0)) *
+                                           n_edge_points][0]) *
                           lobatto_polynomials[j + 2].value(
                             this->generalized_support_points
                               [q_point + GeometryInfo<dim>::lines_per_cell *
-                                           n_edge_points](1)) *
+                                           n_edge_points][1]) *
                           lobatto_polynomials_grad[k].value(
                             this->generalized_support_points
                               [q_point + GeometryInfo<dim>::lines_per_cell *
-                                           n_edge_points](0)) *
+                                           n_edge_points][0]) *
                           lobatto_polynomials[l + 2].value(
                             this->generalized_support_points
                               [q_point + GeometryInfo<dim>::lines_per_cell *
-                                           n_edge_points](1));
+                                           n_edge_points][1]);
 
               system_matrix_inv.reinit(system_matrix.m(), system_matrix.m());
               system_matrix_inv.invert(system_matrix);
@@ -3358,11 +3358,11 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                         lobatto_polynomials_grad[i].value(
                           this->generalized_support_points
                             [q_point + GeometryInfo<dim>::lines_per_cell *
-                                         n_edge_points](0)) *
+                                         n_edge_points][0]) *
                         lobatto_polynomials[j + 2].value(
                           this->generalized_support_points
                             [q_point + GeometryInfo<dim>::lines_per_cell *
-                                         n_edge_points](1));
+                                         n_edge_points][1]);
                 }
 
               solution.reinit(system_matrix.m());
@@ -3409,11 +3409,11 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                         lobatto_polynomials_grad[i].value(
                           this->generalized_support_points
                             [q_point + GeometryInfo<dim>::lines_per_cell *
-                                         n_edge_points](1)) *
+                                         n_edge_points][1]) *
                         lobatto_polynomials[j + 2].value(
                           this->generalized_support_points
                             [q_point + GeometryInfo<dim>::lines_per_cell *
-                                         n_edge_points](0));
+                                         n_edge_points][0]);
                 }
 
               system_matrix_inv.vmult(solution, system_rhs);
@@ -3508,8 +3508,8 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                     system_matrix(i, j) +=
                       boundary_weights(q_point, j) *
                       lobatto_polynomials_grad[i + 1].value(
-                        this->generalized_face_support_points[face_no][q_point](
-                          1));
+                        this->generalized_face_support_points[face_no][q_point]
+                                                             [1]);
 
               FullMatrix<double> system_matrix_inv(this->degree - 1,
                                                    this->degree - 1);
@@ -3588,10 +3588,10 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                                            2 * (k * (this->degree - 1) + l)) *
                           legendre_polynomials[i].value(
                             this->generalized_face_support_points
-                              [face_no][q_point + 4 * n_edge_points](0)) *
+                              [face_no][q_point + 4 * n_edge_points][0]) *
                           lobatto_polynomials[j + 2].value(
                             this->generalized_face_support_points
-                              [face_no][q_point + 4 * n_edge_points](1));
+                              [face_no][q_point + 4 * n_edge_points][1]);
 
               system_matrix_inv.reinit(system_matrix.m(), system_matrix.m());
               system_matrix_inv.invert(system_matrix);
@@ -3745,42 +3745,42 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                                    GeometryInfo<dim>::lines_per_cell *
                                      n_edge_points +
                                    GeometryInfo<dim>::faces_per_cell *
-                                     n_face_points](0)) *
+                                     n_face_points][0]) *
                               lobatto_polynomials[j + 2].value(
                                 this->generalized_support_points
                                   [q_point +
                                    GeometryInfo<dim>::lines_per_cell *
                                      n_edge_points +
                                    GeometryInfo<dim>::faces_per_cell *
-                                     n_face_points](1)) *
+                                     n_face_points][1]) *
                               lobatto_polynomials[k + 2].value(
                                 this->generalized_support_points
                                   [q_point +
                                    GeometryInfo<dim>::lines_per_cell *
                                      n_edge_points +
                                    GeometryInfo<dim>::faces_per_cell *
-                                     n_face_points](2)) *
+                                     n_face_points][2]) *
                               lobatto_polynomials_grad[l].value(
                                 this->generalized_support_points
                                   [q_point +
                                    GeometryInfo<dim>::lines_per_cell *
                                      n_edge_points +
                                    GeometryInfo<dim>::faces_per_cell *
-                                     n_face_points](0)) *
+                                     n_face_points][0]) *
                               lobatto_polynomials[m + 2].value(
                                 this->generalized_support_points
                                   [q_point +
                                    GeometryInfo<dim>::lines_per_cell *
                                      n_edge_points +
                                    GeometryInfo<dim>::faces_per_cell *
-                                     n_face_points](1)) *
+                                     n_face_points][1]) *
                               lobatto_polynomials[n + 2].value(
                                 this->generalized_support_points
                                   [q_point +
                                    GeometryInfo<dim>::lines_per_cell *
                                      n_edge_points +
                                    GeometryInfo<dim>::faces_per_cell *
-                                     n_face_points](2));
+                                     n_face_points][2]);
 
               system_matrix_inv.reinit(system_matrix.m(), system_matrix.m());
               system_matrix_inv.invert(system_matrix);
@@ -3847,21 +3847,21 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](0)) *
+                                 n_face_points][0]) *
                           lobatto_polynomials[j + 2].value(
                             this->generalized_support_points
                               [q_point +
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](1)) *
+                                 n_face_points][1]) *
                           lobatto_polynomials[k + 2].value(
                             this->generalized_support_points
                               [q_point +
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](2));
+                                 n_face_points][2]);
                 }
 
               solution.reinit(system_rhs.size());
@@ -3958,21 +3958,21 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](1)) *
+                                 n_face_points][1]) *
                           lobatto_polynomials[j + 2].value(
                             this->generalized_support_points
                               [q_point +
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](0)) *
+                                 n_face_points][0]) *
                           lobatto_polynomials[k + 2].value(
                             this->generalized_support_points
                               [q_point +
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](2));
+                                 n_face_points][2]);
                 }
 
               system_matrix_inv.vmult(solution, system_rhs);
@@ -4051,21 +4051,21 @@ FE_Nedelec<dim>::convert_generalized_support_point_values_to_dof_values(
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](2)) *
+                                 n_face_points][2]) *
                           lobatto_polynomials[j + 2].value(
                             this->generalized_support_points
                               [q_point +
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](0)) *
+                                 n_face_points][0]) *
                           lobatto_polynomials[k + 2].value(
                             this->generalized_support_points
                               [q_point +
                                GeometryInfo<dim>::lines_per_cell *
                                  n_edge_points +
                                GeometryInfo<dim>::faces_per_cell *
-                                 n_face_points](1));
+                                 n_face_points][1]);
                 }
 
               system_matrix_inv.vmult(solution, system_rhs);
index 07a85344a0d7694e776fff531d10e5109d32fa55..680279c38f450f58ec44e63b13920cc081c3d960 100644 (file)
@@ -99,33 +99,33 @@ FE_P1NC::get_linear_shape_coefficients(
   const Point<2> cpt =
     (cell->vertex(0) + cell->vertex(1) + cell->vertex(2) + cell->vertex(3)) / 4;
 
-  const double det = (mpt[0](0) - mpt[1](0)) * (mpt[2](1) - mpt[3](1)) -
-                     (mpt[2](0) - mpt[3](0)) * (mpt[0](1) - mpt[1](1));
+  const double det = (mpt[0][0] - mpt[1][0]) * (mpt[2][1] - mpt[3][1]) -
+                     (mpt[2][0] - mpt[3][0]) * (mpt[0][1] - mpt[1][1]);
 
   ndarray<double, 4, 3> coeffs;
   coeffs[0][0] =
-    ((mpt[2](1) - mpt[3](1)) * (0.5) - (mpt[0](1) - mpt[1](1)) * (0.5)) / det;
+    ((mpt[2][1] - mpt[3][1]) * (0.5) - (mpt[0][1] - mpt[1][1]) * (0.5)) / det;
   coeffs[1][0] =
-    ((mpt[2](1) - mpt[3](1)) * (-0.5) - (mpt[0](1) - mpt[1](1)) * (0.5)) / det;
+    ((mpt[2][1] - mpt[3][1]) * (-0.5) - (mpt[0][1] - mpt[1][1]) * (0.5)) / det;
   coeffs[2][0] =
-    ((mpt[2](1) - mpt[3](1)) * (0.5) - (mpt[0](1) - mpt[1](1)) * (-0.5)) / det;
+    ((mpt[2][1] - mpt[3][1]) * (0.5) - (mpt[0][1] - mpt[1][1]) * (-0.5)) / det;
   coeffs[3][0] =
-    ((mpt[2](1) - mpt[3](1)) * (-0.5) - (mpt[0](1) - mpt[1](1)) * (-0.5)) / det;
+    ((mpt[2][1] - mpt[3][1]) * (-0.5) - (mpt[0][1] - mpt[1][1]) * (-0.5)) / det;
 
   coeffs[0][1] =
-    (-(mpt[2](0) - mpt[3](0)) * (0.5) + (mpt[0](0) - mpt[1](0)) * (0.5)) / det;
+    (-(mpt[2][0] - mpt[3][0]) * (0.5) + (mpt[0][0] - mpt[1][0]) * (0.5)) / det;
   coeffs[1][1] =
-    (-(mpt[2](0) - mpt[3](0)) * (-0.5) + (mpt[0](0) - mpt[1](0)) * (0.5)) / det;
+    (-(mpt[2][0] - mpt[3][0]) * (-0.5) + (mpt[0][0] - mpt[1][0]) * (0.5)) / det;
   coeffs[2][1] =
-    (-(mpt[2](0) - mpt[3](0)) * (0.5) + (mpt[0](0) - mpt[1](0)) * (-0.5)) / det;
+    (-(mpt[2][0] - mpt[3][0]) * (0.5) + (mpt[0][0] - mpt[1][0]) * (-0.5)) / det;
   coeffs[3][1] =
-    (-(mpt[2](0) - mpt[3](0)) * (-0.5) + (mpt[0](0) - mpt[1](0)) * (-0.5)) /
+    (-(mpt[2][0] - mpt[3][0]) * (-0.5) + (mpt[0][0] - mpt[1][0]) * (-0.5)) /
     det;
 
-  coeffs[0][2] = 0.25 - cpt(0) * coeffs[0][0] - cpt(1) * coeffs[0][1];
-  coeffs[1][2] = 0.25 - cpt(0) * coeffs[1][0] - cpt(1) * coeffs[1][1];
-  coeffs[2][2] = 0.25 - cpt(0) * coeffs[2][0] - cpt(1) * coeffs[2][1];
-  coeffs[3][2] = 0.25 - cpt(0) * coeffs[3][0] - cpt(1) * coeffs[3][1];
+  coeffs[0][2] = 0.25 - cpt[0] * coeffs[0][0] - cpt[1] * coeffs[0][1];
+  coeffs[1][2] = 0.25 - cpt[0] * coeffs[1][0] - cpt[1] * coeffs[1][1];
+  coeffs[2][2] = 0.25 - cpt[0] * coeffs[2][0] - cpt[1] * coeffs[2][1];
+  coeffs[3][2] = 0.25 - cpt[0] * coeffs[3][0] - cpt[1] * coeffs[3][1];
 
   return coeffs;
 }
@@ -231,8 +231,8 @@ FE_P1NC::fill_fe_values(
     for (unsigned int i = 0; i < n_q_points; ++i)
       for (unsigned int k = 0; k < this->n_dofs_per_cell(); ++k)
         output_data.shape_values[k][i] =
-          (coeffs[k][0] * mapping_data.quadrature_points[i](0) +
-           coeffs[k][1] * mapping_data.quadrature_points[i](1) + coeffs[k][2]);
+          (coeffs[k][0] * mapping_data.quadrature_points[i][0] +
+           coeffs[k][1] * mapping_data.quadrature_points[i][1] + coeffs[k][2]);
 
   if (flags & update_gradients)
     for (unsigned int i = 0; i < n_q_points; ++i)
@@ -277,8 +277,8 @@ FE_P1NC::fill_fe_face_values(
                                                 quadrature_on_face.point(i));
 
           output_data.shape_values[k][i] =
-            (coeffs[k][0] * quadrature_point(0) +
-             coeffs[k][1] * quadrature_point(1) + coeffs[k][2]);
+            (coeffs[k][0] * quadrature_point[0] +
+             coeffs[k][1] * quadrature_point[1] + coeffs[k][2]);
         }
 
   if (flags & update_gradients)
@@ -322,8 +322,8 @@ FE_P1NC::fill_fe_subface_values(
                 cell, quadrature_on_subface.point(i));
 
             output_data.shape_values[k][i] =
-              (coeffs[k][0] * quadrature_point(0) +
-               coeffs[k][1] * quadrature_point(1) + coeffs[k][2]);
+              (coeffs[k][0] * quadrature_point[0] +
+               coeffs[k][1] * quadrature_point[1] + coeffs[k][2]);
           }
       }
 
index 7006d4cafcf80ba45a5229f4d0f80696d98786f1..1b2b49a3a6ab7cdc04dfa5a9fbc6226e98b9bc91 100644 (file)
@@ -188,7 +188,7 @@ FE_PolyTensor<dim, spacedim>::FE_PolyTensor(
   , mapping_kind({MappingKind::mapping_none})
   , poly_space(polynomials.clone())
 {
-  cached_point(0) = -1;
+  cached_point[0] = -1;
   // Set up the table converting
   // components to base
   // components. Since we have only
index 198e85c6d130658ea773cf4758f63907903ace91..33c6c9e5b2ed9fd0cc9e5f910b89e09f16266410 100644 (file)
@@ -134,7 +134,7 @@ FE_Q<dim, spacedim>::get_name() const
       const QGaussLobatto<1> points_gl(this->degree + 1);
       bool                   gauss_lobatto = true;
       for (unsigned int j = 0; j <= this->degree; ++j)
-        if (points[j] != points_gl.point(j)(0))
+        if (points[j] != points_gl.point(j)[0])
           {
             gauss_lobatto = false;
             break;
index afabd9881e037288fc202880aacb66f4f4b86446..20dc0c5a2c66bca89e53ece4fc68801f4428ff9c 100644 (file)
@@ -199,7 +199,7 @@ struct FE_Q_Base<xdim, xspacedim>::Implementation
       for (unsigned int j = 0; j < q_deg + 1; ++j)
         {
           Point<dim> p;
-          p[0] = constraint_points[i](0);
+          p[0] = constraint_points[i][0];
           fe.interface_constraints(i, face_index_map[j]) =
             fe.poly_space->compute_value(index_map_inverse[j], p);
 
@@ -257,7 +257,7 @@ struct FE_Q_Base<xdim, xspacedim>::Implementation
         const double                step = 1. / q_deg;
         std::vector<Point<dim - 2>> line_support_points(n);
         for (unsigned int i = 0; i < n; ++i)
-          line_support_points[i](0) = (i + 1) * step;
+          line_support_points[i][0] = (i + 1) * step;
         Quadrature<dim - 2> qline(line_support_points);
 
         // auxiliary points in 2d
@@ -357,8 +357,8 @@ struct FE_Q_Base<xdim, xspacedim>::Implementation
         for (unsigned int k = 0; k < dim - 1; ++k)
           {
             const int coord_int =
-              static_cast<int>(constraint_points[i](k) * interval + 0.25);
-            constraint_point(k) = 1. * coord_int / interval;
+              static_cast<int>(constraint_points[i][k] * interval + 0.25);
+            constraint_point[k] = 1. * coord_int / interval;
 
             // The following lines of code should eliminate the problems with
             // the constraints object which appeared for P>=4. The
@@ -380,9 +380,9 @@ struct FE_Q_Base<xdim, xspacedim>::Implementation
             //
             // For a different explanation of the problem, see the discussion
             // in the FiniteElement class for constraint matrices in 3d.
-            mirror[k] = (constraint_point(k) > 0.5);
+            mirror[k] = (constraint_point[k] > 0.5);
             if (mirror[k])
-              constraint_point(k) = 1.0 - constraint_point(k);
+              constraint_point[k] = 1.0 - constraint_point[k];
           }
 
         for (unsigned int j = 0; j < pnts; ++j)
index bb5e976090709d1572faaa98837c36505743c845..3be49d131585fbe3006445ab11ea3c4c8c5d3e90 100644 (file)
@@ -155,7 +155,7 @@ namespace internal
                                                fine.JxW(q);
                         Point<dim> quad_tmp;
                         for (unsigned int k = 0; k < dim; ++k)
-                          quad_tmp(k) = fine.quadrature_point(q)(k);
+                          quad_tmp[k] = fine.quadrature_point(q)[k];
                         coarse_rhs_matrix(gdi, j) +=
                           fine.shape_value(i, q) * fe.shape_value(j, quad_tmp) *
                           fine.JxW(q);
@@ -282,16 +282,16 @@ FE_Q_Bubbles<dim, spacedim>::get_name() const
   // Decode the support points in one coordinate direction.
   for (unsigned int j = 0; j < dofs_per_cell; ++j)
     {
-      if ((dim > 1) ? (unit_support_points[j](1) == 0 &&
-                       ((dim > 2) ? unit_support_points[j](2) == 0 : true)) :
+      if ((dim > 1) ? (unit_support_points[j][1] == 0 &&
+                       ((dim > 2) ? unit_support_points[j][2] == 0 : true)) :
                       true)
         {
           if (index == 0)
-            points[index] = unit_support_points[j](0);
+            points[index] = unit_support_points[j][0];
           else if (index == 1)
-            points[n_points - 1] = unit_support_points[j](0);
+            points[n_points - 1] = unit_support_points[j][0];
           else
-            points[index - 1] = unit_support_points[j](0);
+            points[index - 1] = unit_support_points[j][0];
 
           ++index;
         }
@@ -325,7 +325,7 @@ FE_Q_Bubbles<dim, spacedim>::get_name() const
       const QGaussLobatto<1> points_gl(n_points);
       type = true;
       for (unsigned int j = 0; j < n_points; ++j)
-        if (points[j] != points_gl.point(j)(0))
+        if (points[j] != points_gl.point(j)[0])
           {
             type = false;
             break;
index e5e898233b0618b0797448ad052c92165fea8003..355ebbfab0da0dbd833b064def03f3702ea60369 100644 (file)
@@ -108,16 +108,16 @@ FE_Q_DG0<dim, spacedim>::get_name() const
   // Decode the support points in one coordinate direction.
   for (unsigned int j = 0; j < dofs_per_cell; ++j)
     {
-      if ((dim > 1) ? (unit_support_points[j](1) == 0 &&
-                       ((dim > 2) ? unit_support_points[j](2) == 0 : true)) :
+      if ((dim > 1) ? (unit_support_points[j][1] == 0 &&
+                       ((dim > 2) ? unit_support_points[j][2] == 0 : true)) :
                       true)
         {
           if (index == 0)
-            points[index] = unit_support_points[j](0);
+            points[index] = unit_support_points[j][0];
           else if (index == 1)
-            points[n_points - 1] = unit_support_points[j](0);
+            points[n_points - 1] = unit_support_points[j][0];
           else
-            points[index - 1] = unit_support_points[j](0);
+            points[index - 1] = unit_support_points[j][0];
 
           ++index;
         }
@@ -150,7 +150,7 @@ FE_Q_DG0<dim, spacedim>::get_name() const
       const QGaussLobatto<1> points_gl(n_points);
       type = true;
       for (unsigned int j = 0; j < n_points; ++j)
-        if (points[j] != points_gl.point(j)(0))
+        if (points[j] != points_gl.point(j)[0])
           {
             type = false;
             break;
index 4c5e51ada7d12e90b5d3f83b3113dc28539084e9..fb44b9e2bd5f89fb5801ced029b5a96dde9811b3 100644 (file)
@@ -862,28 +862,28 @@ FE_Q_Hierarchical<dim>::initialize_generalized_support_points()
       for (unsigned int ix = 0; ix <= this->degree; ++ix)
         {
           if (ix == 0)
-            p(0) = 0.;
+            p[0] = 0.;
           else if (ix == 1)
-            p(0) = 1.;
+            p[0] = 1.;
           else
-            p(0) = .5;
+            p[0] = .5;
           if (dim > 1)
             {
               if (iy == 0)
-                p(1) = 0.;
+                p[1] = 0.;
               else if (iy == 1)
-                p(1) = 1.;
+                p[1] = 1.;
               else
-                p(1) = .5;
+                p[1] = .5;
             }
           if (dim > 2)
             {
               if (iz == 0)
-                p(2) = 0.;
+                p[2] = 0.;
               else if (iz == 1)
-                p(2) = 1.;
+                p[2] = 1.;
               else
-                p(2) = .5;
+                p[2] = .5;
             }
           this->generalized_support_points[index_map_inverse[k++]] = p;
         }
@@ -1933,28 +1933,28 @@ FE_Q_Hierarchical<dim>::initialize_generalized_face_support_points()
       for (unsigned int ix = 0; ix <= this->degree; ++ix)
         {
           if (ix == 0)
-            p(0) = 0.;
+            p[0] = 0.;
           else if (ix == 1)
-            p(0) = 1.;
+            p[0] = 1.;
           else
-            p(0) = .5;
+            p[0] = .5;
           if (codim > 1)
             {
               if (iy == 0)
-                p(1) = 0.;
+                p[1] = 0.;
               else if (iy == 1)
-                p(1) = 1.;
+                p[1] = 1.;
               else
-                p(1) = .5;
+                p[1] = .5;
             }
           if (codim > 2)
             {
               if (iz == 0)
-                p(2) = 0.;
+                p[2] = 0.;
               else if (iz == 1)
-                p(2) = 1.;
+                p[2] = 1.;
               else
-                p(2) = .5;
+                p[2] = .5;
             }
           this->generalized_face_support_points[face_no][face_renumber[k++]] =
             p;
index 873b44c2c3a01835b6e24a6e2a1253f86404f029..d6d3bf51bea80881feee2c750b452841d9fc0235 100644 (file)
@@ -96,13 +96,13 @@ FE_RannacherTurek<dim>::initialize_support_points()
   for (unsigned int q = 0; q < face_quadrature.size(); ++q)
     {
       this->generalized_support_points[0 * face_quadrature.size() + q] =
-        dealii::Point<dim>(0, 1 - face_quadrature.point(q)(0));
+        dealii::Point<dim>(0, 1 - face_quadrature.point(q)[0]);
       this->generalized_support_points[1 * face_quadrature.size() + q] =
-        dealii::Point<dim>(1, 1 - face_quadrature.point(q)(0));
+        dealii::Point<dim>(1, 1 - face_quadrature.point(q)[0]);
       this->generalized_support_points[2 * face_quadrature.size() + q] =
-        dealii::Point<dim>(face_quadrature.point(q)(0), 0);
+        dealii::Point<dim>(face_quadrature.point(q)[0], 0);
       this->generalized_support_points[3 * face_quadrature.size() + q] =
-        dealii::Point<dim>(face_quadrature.point(q)(0), 1);
+        dealii::Point<dim>(face_quadrature.point(q)[0], 1);
     }
 }
 
index c4f9c5d0ccb613eab83ca84fe142596880c9eb82..e7bc4f73530fb24402cb8275ce280310d0e9e398 100644 (file)
@@ -171,18 +171,18 @@ Mapping<dim, spacedim>::project_real_point_to_unit_point_on_face(
   if (dim == 2)
     {
       if (unit_normal_direction == 0)
-        return Point<dim - 1>{unit_cell_pt(1)};
+        return Point<dim - 1>{unit_cell_pt[1]};
       else if (unit_normal_direction == 1)
-        return Point<dim - 1>{unit_cell_pt(0)};
+        return Point<dim - 1>{unit_cell_pt[0]};
     }
   else if (dim == 3)
     {
       if (unit_normal_direction == 0)
-        return Point<dim - 1>{unit_cell_pt(1), unit_cell_pt(2)};
+        return Point<dim - 1>{unit_cell_pt[1], unit_cell_pt[2]};
       else if (unit_normal_direction == 1)
-        return Point<dim - 1>{unit_cell_pt(0), unit_cell_pt(2)};
+        return Point<dim - 1>{unit_cell_pt[0], unit_cell_pt[2]};
       else if (unit_normal_direction == 2)
-        return Point<dim - 1>{unit_cell_pt(0), unit_cell_pt(1)};
+        return Point<dim - 1>{unit_cell_pt[0], unit_cell_pt[1]};
     }
 
   // We should never get here
index 2fbd42983baa10c2b53f1854f7de4e3463272d6a..62f3064c54b05023e90be72daca5bfb11b2fca4d 100644 (file)
@@ -243,16 +243,16 @@ MappingCartesian<dim, spacedim>::update_cell_extents(
       switch (dim)
         {
           case 1:
-            data.cell_extents[0] = cell->vertex(1)(0) - start(0);
+            data.cell_extents[0] = cell->vertex(1)[0] - start[0];
             break;
           case 2:
-            data.cell_extents[0] = cell->vertex(1)(0) - start(0);
-            data.cell_extents[1] = cell->vertex(2)(1) - start(1);
+            data.cell_extents[0] = cell->vertex(1)[0] - start[0];
+            data.cell_extents[1] = cell->vertex(2)[1] - start[1];
             break;
           case 3:
-            data.cell_extents[0] = cell->vertex(1)(0) - start(0);
-            data.cell_extents[1] = cell->vertex(2)(1) - start(1);
-            data.cell_extents[2] = cell->vertex(4)(2) - start(2);
+            data.cell_extents[0] = cell->vertex(1)[0] - start[0];
+            data.cell_extents[1] = cell->vertex(2)[1] - start[1];
+            data.cell_extents[2] = cell->vertex(4)[2] - start[2];
             break;
           default:
             Assert(false, ExcNotImplemented());
@@ -356,8 +356,8 @@ MappingCartesian<dim, spacedim>::transform_quadrature_points(
     {
       quadrature_points[i] = start;
       for (unsigned int d = 0; d < dim; ++d)
-        quadrature_points[i](d) +=
-          data.cell_extents[d] * data.quadrature_points[i + offset](d);
+        quadrature_points[i][d] +=
+          data.cell_extents[d] * data.quadrature_points[i + offset][d];
     }
 }
 
@@ -1177,16 +1177,16 @@ MappingCartesian<dim, spacedim>::transform_unit_to_real_cell(
   switch (dim)
     {
       case 1:
-        length[0] = cell->vertex(1)(0) - start(0);
+        length[0] = cell->vertex(1)[0] - start[0];
         break;
       case 2:
-        length[0] = cell->vertex(1)(0) - start(0);
-        length[1] = cell->vertex(2)(1) - start(1);
+        length[0] = cell->vertex(1)[0] - start[0];
+        length[1] = cell->vertex(2)[1] - start[1];
         break;
       case 3:
-        length[0] = cell->vertex(1)(0) - start(0);
-        length[1] = cell->vertex(2)(1) - start(1);
-        length[2] = cell->vertex(4)(2) - start(2);
+        length[0] = cell->vertex(1)[0] - start[0];
+        length[1] = cell->vertex(2)[1] - start[1];
+        length[2] = cell->vertex(4)[2] - start[2];
         break;
       default:
         Assert(false, ExcNotImplemented());
@@ -1194,7 +1194,7 @@ MappingCartesian<dim, spacedim>::transform_unit_to_real_cell(
 
   Point<dim> p_real = cell->vertex(0);
   for (unsigned int d = 0; d < dim; ++d)
-    p_real(d) += length[d] * p(d);
+    p_real[d] += length[d] * p[d];
 
   return p_real;
 }
@@ -1218,16 +1218,16 @@ MappingCartesian<dim, spacedim>::transform_real_to_unit_cell(
   switch (dim)
     {
       case 1:
-        real(0) /= cell->vertex(1)(0) - start(0);
+        real[0] /= cell->vertex(1)[0] - start[0];
         break;
       case 2:
-        real(0) /= cell->vertex(1)(0) - start(0);
-        real(1) /= cell->vertex(2)(1) - start(1);
+        real[0] /= cell->vertex(1)[0] - start[0];
+        real[1] /= cell->vertex(2)[1] - start[1];
         break;
       case 3:
-        real(0) /= cell->vertex(1)(0) - start(0);
-        real(1) /= cell->vertex(2)(1) - start(1);
-        real(2) /= cell->vertex(4)(2) - start(2);
+        real[0] /= cell->vertex(1)[0] - start[0];
+        real[1] /= cell->vertex(2)[1] - start[1];
+        real[2] /= cell->vertex(4)[2] - start[2];
         break;
       default:
         Assert(false, ExcNotImplemented());
index 73444b89f974270b720593fc466b702a1b8543d3..943098bd8049bce802e8958a735d343b2013b443 100644 (file)
@@ -531,8 +531,8 @@ MappingQ<dim, spacedim>::transform_real_to_unit_cell(
                   // the cell. only take the computed point if it lies
                   // inside the reference cell
                   const double eps = 1e-15;
-                  if (-eps <= point(1) && point(1) <= 1 + eps &&
-                      -eps <= point(0) && point(0) <= 1 + eps)
+                  if (-eps <= point[1] && point[1] <= 1 + eps &&
+                      -eps <= point[0] && point[0] <= 1 + eps)
                     {
                       return point;
                     }
index c7ff940f1a8e481c5da4cf7f73d34e7071c45a68..eea4b4d0af3b4b90d9b355c5c906da5fceb1ce44 100644 (file)
@@ -182,7 +182,7 @@ MappingQEulerian<dim, VectorType, spacedim>::compute_mapping_support_points(
     {
       a[q] = fe_values.quadrature_point(q);
       for (unsigned int d = 0; d < spacedim; ++d)
-        a[q](d) += shift_vector[q](d);
+        a[q][d] += shift_vector[q][d];
     }
 
   return a;
index e6e3db8b8107ef1ab59d8b647394c1b350c8c79c..2ece4e68e4d55b8250fb995b11c73468062d0093 100644 (file)
@@ -205,11 +205,11 @@ namespace GridGenerator
                         Point<2>(
                           1)}}} /* dummy vector since we are asserting later*/),
               data.airfoil_length))
-          , end_b0_x_u(airfoil_1D[0][n_cells_x_0](0))
-          , end_b0_x_l(airfoil_1D[1][n_cells_x_0](0))
-          , nose_x(airfoil_1D[0].front()(0))
-          , tail_x(airfoil_1D[0].back()(0))
-          , tail_y(airfoil_1D[0].back()(1))
+          , end_b0_x_u(airfoil_1D[0][n_cells_x_0][0])
+          , end_b0_x_l(airfoil_1D[1][n_cells_x_0][0])
+          , nose_x(airfoil_1D[0].front()[0])
+          , tail_x(airfoil_1D[0].back()[0])
+          , tail_y(airfoil_1D[0].back()[1])
           , center_mesh(0.5 * std::abs(end_b0_x_u + end_b0_x_l))
           , length_b1_x(tail_x - center_mesh)
           , gamma(std::atan(height /
@@ -227,8 +227,8 @@ namespace GridGenerator
           , H(tail_x, 0)
           , I(tail_x, -height)
           , J(tail_x + length_b2, 0)
-          , K(J(0), G(1))
-          , L(J(0), I(1))
+          , K(J[0], G[1])
+          , L(J[0], I[1])
         {
           Assert(data.airfoil_type == "Joukowski" ||
                    data.airfoil_type == "NACA",
@@ -444,14 +444,14 @@ namespace GridGenerator
             // find index in vector to nose point (min) and tail point (max)
             for (unsigned int i = 0; i < jouk_points.size(); ++i)
               {
-                if (jouk_points[i](0) < nose_x_coordinate)
+                if (jouk_points[i][0] < nose_x_coordinate)
                   {
-                    nose_x_coordinate = jouk_points[i](0);
+                    nose_x_coordinate = jouk_points[i][0];
                     nose_index        = i;
                   }
-                if (jouk_points[i](0) > tail_x_coordinate)
+                if (jouk_points[i][0] > tail_x_coordinate)
                   {
-                    tail_x_coordinate = jouk_points[i](0);
+                    tail_x_coordinate = jouk_points[i][0];
                     tail_index        = i;
                   }
               }
@@ -474,9 +474,9 @@ namespace GridGenerator
 
           // move nose to origin
           auto move_nose_to_origin = [](std::vector<Point<2>> &vector) {
-            const double nose_x_pos = vector.front()(0);
+            const double nose_x_pos = vector.front()[0];
             for (auto &i : vector)
-              i(0) -= nose_x_pos;
+              i[0] -= nose_x_pos;
           };
 
           move_nose_to_origin(airfoil_1D[1]);
@@ -520,10 +520,10 @@ namespace GridGenerator
 
           // Calculate radius so that point (x=1|y=0) is enclosed - requirement
           //  for Joukowski transform
-          const double radius      = std::sqrt(center(1) * center(1) +
-                                          (1 - center(0)) * (1 - center(0)));
+          const double radius      = std::sqrt(center[1] * center[1] +
+                                          (1 - center[0]) * (1 - center[0]));
           const double radius_test = std::sqrt(
-            center(1) * center(1) + (1 + center(0)) * (1 + center(0)));
+            center[1] * center[1] + (1 + center[0]) * (1 + center[0]));
           // Make sure point (x=-1|y=0) is enclosed by the circle
           (void)radius_test;
           AssertThrow(
@@ -559,8 +559,8 @@ namespace GridGenerator
           // transform each point
           for (unsigned int i = 0; i < circle_points.size(); ++i)
             {
-              const double               chi = circle_points[i](0);
-              const double               eta = circle_points[i](1);
+              const double               chi = circle_points[i][0];
+              const double               eta = circle_points[i][1];
               const std::complex<double> zeta(chi, eta);
               const std::complex<double> z = zeta + 1. / zeta;
 
@@ -849,8 +849,8 @@ namespace GridGenerator
             for (auto it = tria.begin_vertex(); it < tria.end_vertex(); ++it)
               {
                 auto        &point = it->vertex();
-                const double xi    = point(0);
-                const double eta   = point(1);
+                const double xi    = point[0];
+                const double eta   = point[1];
 
                 // bilinear mapping
                 point = 0.25 * ((1 - xi) * (1 - eta) * corner_vertices[0] +
@@ -970,7 +970,7 @@ namespace GridGenerator
 
           // horizontal offset in order to place coarse-grid node A in the
           // origin
-          const Point<2, double> horizontal_offset(A(0), 0.0);
+          const Point<2, double> horizontal_offset(A[0], 0.0);
 
           // Move block 1 so that face BC coincides the x-axis
           const Point<2, double> trapeze_offset(0.0,
@@ -994,7 +994,7 @@ namespace GridGenerator
                     cell->material_id() == id_block_4) // block 1 and 4
                   {
                     // step 1: rotate block 1 clockwise by gamma and move block
-                    // 1 so that A(0) is on y-axis so that faces AD and BC are
+                    // 1 so that A[0] is on y-axis so that faces AD and BC are
                     // horizontal. This simplifies the computation of the
                     // required indices for interpolation (all x-nodes are
                     // positive) Move trapeze to be in first quadrant by adding
@@ -1023,21 +1023,21 @@ namespace GridGenerator
                       const double L   = height / std::sin(gamma);
                       const double l_a = std::cos(gamma) * edge_length;
                       const double l_b = trapeze_height * std::tan(gamma);
-                      const double x1  = std::abs(node_(1)) / std::tan(gamma);
+                      const double x1  = std::abs(node_[1]) / std::tan(gamma);
                       const double x2  = L - l_a - l_b;
-                      const double x3  = std::abs(node_(1)) * std::tan(gamma);
+                      const double x3  = std::abs(node_[1]) * std::tan(gamma);
                       const double Dx  = x1 + x2 + x3;
                       const double deltax =
-                        (trapeze_height - std::abs(node_(1))) / std::tan(gamma);
+                        (trapeze_height - std::abs(node_[1])) / std::tan(gamma);
                       const double dx = Dx / n_cells_x_0;
                       const double dy = trapeze_height / n_cells_y;
                       const int    ix =
-                        static_cast<int>(std::round((node_(0) - deltax) / dx));
+                        static_cast<int>(std::round((node_[0] - deltax) / dx));
                       const int iy =
-                        static_cast<int>(std::round(std::abs(node_(1)) / dy));
+                        static_cast<int>(std::round(std::abs(node_[1]) / dy));
 
-                      node_(0) = numbers::PI / 2 * (1.0 * ix) / n_cells_x_0;
-                      node_(1) = height * (1.0 * iy) / n_cells_y;
+                      node_[0] = numbers::PI / 2 * (1.0 * ix) / n_cells_x_0;
+                      node_[1] = height * (1.0 * iy) / n_cells_y;
                     }
 
                     // step 3: Interpolation between semicircle (of C-Mesh) and
@@ -1046,12 +1046,12 @@ namespace GridGenerator
                       const double dx = numbers::PI / 2 / n_cells_x_0;
                       const double dy = height / n_cells_y;
                       const int    ix =
-                        static_cast<int>(std::round(node_(0) / dx));
+                        static_cast<int>(std::round(node_[0] / dx));
                       const int iy =
-                        static_cast<int>(std::round(node_(1) / dy));
+                        static_cast<int>(std::round(node_[1] / dy));
                       const double alpha =
                         bias_alpha(1 - (1.0 * iy) / n_cells_y);
-                      const double   theta = node_(0);
+                      const double   theta = node_[0];
                       const Point<2> p(-height * std::cos(theta) + center_mesh,
                                        ((cell->material_id() == id_block_1) ?
                                           (height) :
@@ -1069,22 +1069,22 @@ namespace GridGenerator
                   {
                     // geometric parameters and indices for interpolation
                     Assert(
-                      (std::abs(D(1) - C(1)) == std::abs(F(1) - E(1))) &&
-                        (std::abs(C(1)) == std::abs(E(1))) &&
-                        (std::abs(G(1)) == std::abs(I(1))),
+                      (std::abs(D[1] - C[1]) == std::abs(F[1] - E[1])) &&
+                        (std::abs(C[1]) == std::abs(E[1])) &&
+                        (std::abs(G[1]) == std::abs(I[1])),
                       ExcMessage(
                         "Points D,C,G and E,F,I are not defined symmetric to "
                         "x-axis, which is required to interpolate block 2"
                         " and 5 with same geometric computations."));
-                    const double l_y = D(1) - C(1);
-                    const double l_h = D(1) - l_y;
-                    const double by  = -l_h / length_b1_x * (node(0) - H(0));
+                    const double l_y = D[1] - C[1];
+                    const double l_h = D[1] - l_y;
+                    const double by  = -l_h / length_b1_x * (node[0] - H[0]);
                     const double dy  = (height - by) / n_cells_y;
                     const int    iy  = static_cast<int>(
-                      std::round((std::abs(node(1)) - by) / dy));
+                      std::round((std::abs(node[1]) - by) / dy));
                     const double dx = length_b1_x / n_cells_x_1;
                     const int    ix = static_cast<int>(
-                      std::round(std::abs(node(0) - center_mesh) / dx));
+                      std::round(std::abs(node[0] - center_mesh) / dx));
 
                     const double alpha = bias_alpha(1 - (1.0 * iy) / n_cells_y);
                     // define points on upper/lower horizontal far field side,
@@ -1111,9 +1111,9 @@ namespace GridGenerator
                     const double dx = length_b2 / n_cells_x_2;
                     const double dy = height / n_cells_y;
                     const int    ix = static_cast<int>(
-                      std::round(std::abs(node(0) - H(0)) / dx));
+                      std::round(std::abs(node[0] - H[0]) / dx));
                     const int iy =
-                      static_cast<int>(std::round(std::abs(node(1)) / dy));
+                      static_cast<int>(std::round(std::abs(node[1]) / dy));
 
                     const double alpha_y = bias_alpha(1 - 1.0 * iy / n_cells_y);
                     const double alpha_x =
@@ -1121,14 +1121,14 @@ namespace GridGenerator
                     // define on upper/lower horizontal far field side at y =
                     // +/- height, i.e. face GK or IL incline factor to move
                     // points G and H to the right
-                    const Point<2> p1(J(0) - (1 - incline_factor) * length_b2 *
+                    const Point<2> p1(J[0] - (1 - incline_factor) * length_b2 *
                                                (alpha_x),
                                       ((cell->material_id() == id_block_3) ?
                                          (height) :
                                          (-height)));
                     // define points on HJ but use tail_y as y-coordinate, in
                     // case last airfoil point has y =/= 0
-                    const Point<2> p2(J(0) - alpha_x * length_b2, tail_y);
+                    const Point<2> p2(J[0] - alpha_x * length_b2, tail_y);
                     node = p1 * (1 - alpha_y) + p2 * alpha_y;
                   }
                 else
@@ -1275,7 +1275,7 @@ namespace GridGenerator
              tria.begin();
            cell != tria.end();
            ++cell)
-        if (cell->center()(0) > 0)
+        if (cell->center()[0] > 0)
           cell->set_material_id(1);
       // boundary indicators are set to
       // 0 (left) and 1 (right) by default.
@@ -1307,17 +1307,17 @@ namespace GridGenerator
             {
               const Point<spacedim> center(face->center());
 
-              if (std::abs(center(0) - p1[0]) < epsilon)
+              if (std::abs(center[0] - p1[0]) < epsilon)
                 face->set_boundary_id(0);
-              else if (std::abs(center(0) - p2[0]) < epsilon)
+              else if (std::abs(center[0] - p2[0]) < epsilon)
                 face->set_boundary_id(1);
-              else if (dim > 1 && std::abs(center(1) - p1[1]) < epsilon)
+              else if (dim > 1 && std::abs(center[1] - p1[1]) < epsilon)
                 face->set_boundary_id(2);
-              else if (dim > 1 && std::abs(center(1) - p2[1]) < epsilon)
+              else if (dim > 1 && std::abs(center[1] - p2[1]) < epsilon)
                 face->set_boundary_id(3);
-              else if (dim > 2 && std::abs(center(2) - p1[2]) < epsilon)
+              else if (dim > 2 && std::abs(center[2] - p1[2]) < epsilon)
                 face->set_boundary_id(4);
-              else if (dim > 2 && std::abs(center(2) - p2[2]) < epsilon)
+              else if (dim > 2 && std::abs(center[2] - p2[2]) < epsilon)
                 face->set_boundary_id(5);
               else
                 // triangulation says it
@@ -1331,7 +1331,7 @@ namespace GridGenerator
         {
           types::material_id id = 0;
           for (unsigned int d = 0; d < dim; ++d)
-            if (cell->center()(d) > 0)
+            if (cell->center()[d] > 0)
               id += (1 << d);
           cell->set_material_id(id);
         }
@@ -1464,7 +1464,7 @@ namespace GridGenerator
               continue;
 
             double radius = cell->face(f)->center().norm() - center.norm();
-            if (std::fabs(cell->face(f)->center()(0)) <
+            if (std::fabs(cell->face(f)->center()[0]) <
                 eps) // x = 0 set boundary 2
               {
                 cell->face(f)->set_boundary_id(2);
@@ -1476,7 +1476,7 @@ namespace GridGenerator
                         eps)
                       cell->face(f)->line(j)->set_boundary_id(2);
               }
-            else if (std::fabs(cell->face(f)->center()(1)) <
+            else if (std::fabs(cell->face(f)->center()[1]) <
                      eps) // y = 0 set boundary 3
               {
                 cell->face(f)->set_boundary_id(3);
@@ -1488,7 +1488,7 @@ namespace GridGenerator
                         eps)
                       cell->face(f)->line(j)->set_boundary_id(3);
               }
-            else if (std::fabs(cell->face(f)->center()(2)) <
+            else if (std::fabs(cell->face(f)->center()[2]) <
                      eps) // z = 0 set boundary 4
               {
                 cell->face(f)->set_boundary_id(4);
@@ -1543,8 +1543,8 @@ namespace GridGenerator
     Point<spacedim> p1, p2;
     for (unsigned int i = 0; i < dim; ++i)
       {
-        p1(i) = std::min(p_1(i), p_2(i));
-        p2(i) = std::max(p_1(i), p_2(i));
+        p1[i] = std::min(p_1[i], p_2[i]);
+        p2[i] = std::max(p_1[i], p_2[i]);
       }
 
     std::vector<Point<spacedim>> vertices(GeometryInfo<dim>::vertices_per_cell);
@@ -1558,22 +1558,22 @@ namespace GridGenerator
           vertices[0] = vertices[1] = p1;
           vertices[2] = vertices[3] = p2;
 
-          vertices[1](0) = p2(0);
-          vertices[2](0) = p1(0);
+          vertices[1][0] = p2[0];
+          vertices[2][0] = p1[0];
           break;
         case 3:
           vertices[0] = vertices[1] = vertices[2] = vertices[3] = p1;
           vertices[4] = vertices[5] = vertices[6] = vertices[7] = p2;
 
-          vertices[1](0) = p2(0);
-          vertices[2](1) = p2(1);
-          vertices[3](0) = p2(0);
-          vertices[3](1) = p2(1);
+          vertices[1][0] = p2[0];
+          vertices[2][1] = p2[1];
+          vertices[3][0] = p2[0];
+          vertices[3][1] = p2[1];
 
-          vertices[4](0) = p1(0);
-          vertices[4](1) = p1(1);
-          vertices[5](1) = p1(1);
-          vertices[6](0) = p1(0);
+          vertices[4][0] = p1[0];
+          vertices[4][1] = p1[1];
+          vertices[5][1] = p1[1];
+          vertices[6][0] = p1[0];
 
           break;
         default:
@@ -1608,8 +1608,8 @@ namespace GridGenerator
     Point<dim> p1, p2;
     for (unsigned int i = 0; i < dim; ++i)
       {
-        p1(i) = left;
-        p2(i) = right;
+        p1[i] = left;
+        p2[i] = right;
       }
     hyper_rectangle(tria, p1, p2, colorize);
   }
@@ -1628,7 +1628,7 @@ namespace GridGenerator
     Tensor<2, dim> vector_matrix;
     for (unsigned int d = 0; d < dim; ++d)
       for (unsigned int c = 1; c <= dim; ++c)
-        vector_matrix[c - 1][d] = vertices[c](d) - vertices[0](d);
+        vector_matrix[c - 1][d] = vertices[c][d] - vertices[0][d];
     Assert(determinant(vector_matrix) > 0.,
            ExcMessage("Vertices of simplex must form a right handed system"));
 #  endif
@@ -2515,8 +2515,8 @@ namespace GridGenerator
     Point<spacedim> p1, p2;
     for (unsigned int i = 0; i < dim; ++i)
       {
-        p1(i) = std::min(p_1(i), p_2(i));
-        p2(i) = std::max(p_1(i), p_2(i));
+        p1[i] = std::min(p_1[i], p_2[i]);
+        p2[i] = std::max(p_1[i], p_2[i]);
       }
 
     // calculate deltas and validate input
@@ -2671,9 +2671,9 @@ namespace GridGenerator
 
     for (unsigned int i = 0; i < dim; ++i)
       {
-        if (p1(i) > p2(i))
+        if (p1[i] > p2[i])
           {
-            std::swap(p1(i), p2(i));
+            std::swap(p1[i], p2[i]);
             std::reverse(step_sizes[i].begin(), step_sizes[i].end());
           }
 
@@ -2681,7 +2681,7 @@ namespace GridGenerator
         double x = 0;
         for (unsigned int j = 0; j < step_sizes.at(i).size(); ++j)
           x += step_sizes[i][j];
-        Assert(std::fabs(x - (p2(i) - p1(i))) <= 1e-12 * std::fabs(x),
+        Assert(std::fabs(x - (p2[i] - p1[i])) <= 1e-12 * std::fabs(x),
                ExcMessage(
                  "The sequence of step sizes in coordinate direction " +
                  Utilities::int_to_string(i) +
@@ -3142,7 +3142,7 @@ namespace GridGenerator
     Point<spacedim> p1;
     Point<spacedim> p2;
     for (unsigned int d = 0; d < dim; ++d)
-      p2(d) = 1.;
+      p2[d] = 1.;
 
     // then check that all repetitions
     // are >= 1, and calculate deltas
@@ -3852,7 +3852,7 @@ namespace GridGenerator
       {
         Point<spacedim> p;
         for (unsigned int d = 0; d < dim; ++d)
-          p(d) = 0.5 * dimensions[d] *
+          p[d] = 0.5 * dimensions[d] *
                  GeometryInfo<dim>::unit_normal_orientation
                    [GeometryInfo<dim>::vertex_to_face[i][d]];
         points.push_back(p);
@@ -3888,7 +3888,7 @@ namespace GridGenerator
                 cells[cell_index].vertices[cellv] = points.size();
 
                 Point<spacedim> p = points[cells[cell_index].vertices[ocellv]];
-                p(dir) += GeometryInfo<dim>::unit_normal_orientation[face] *
+                p[dir] += GeometryInfo<dim>::unit_normal_orientation[face] *
                           dimensions[dir];
                 points.push_back(p);
               }
@@ -4573,8 +4573,8 @@ namespace GridGenerator
 
             // If one the components is the same as the respective
             // component of the center, then this is part of the plane
-            if (cell->face(i)->center()(0) < p(0) + 1.e-5 * radius ||
-                cell->face(i)->center()(1) < p(1) + 1.e-5 * radius)
+            if (cell->face(i)->center()[0] < p[0] + 1.e-5 * radius ||
+                cell->face(i)->center()[1] < p[1] + 1.e-5 * radius)
               {
                 cell->face(i)->set_boundary_id(1);
                 cell->face(i)->set_manifold_id(numbers::flat_manifold_id);
@@ -4639,7 +4639,7 @@ namespace GridGenerator
               continue;
 
             // If x is zero, then this is part of the plane
-            if (cell->face(i)->center()(0) < p(0) + 1.e-5 * radius)
+            if (cell->face(i)->center()[0] < p[0] + 1.e-5 * radius)
               {
                 cell->face(i)->set_boundary_id(1);
                 cell->face(i)->set_manifold_id(numbers::flat_manifold_id);
@@ -5526,9 +5526,9 @@ namespace GridGenerator
     // Turn cylinder such that y->x
     for (auto &vertex : vertices)
       {
-        const double h = vertex(1);
-        vertex(1)      = -vertex(0);
-        vertex(0)      = h;
+        const double h = vertex[1];
+        vertex[1]      = -vertex[0];
+        vertex[0]      = h;
       }
 
     std::vector<std::vector<int>> cell_vertices;
@@ -5585,7 +5585,7 @@ namespace GridGenerator
       for (const unsigned int i : GeometryInfo<3>::face_indices())
         if (cell->at_boundary(i))
           {
-            if (cell->face(i)->center()(0) > half_length - tolerance)
+            if (cell->face(i)->center()[0] > half_length - tolerance)
               {
                 cell->face(i)->set_boundary_id(2);
                 cell->face(i)->set_manifold_id(numbers::flat_manifold_id);
@@ -5602,7 +5602,7 @@ namespace GridGenerator
                         numbers::flat_manifold_id);
                     }
               }
-            else if (cell->face(i)->center()(0) < -half_length + tolerance)
+            else if (cell->face(i)->center()[0] < -half_length + tolerance)
               {
                 cell->face(i)->set_boundary_id(1);
                 cell->face(i)->set_manifold_id(numbers::flat_manifold_id);
@@ -5698,9 +5698,9 @@ namespace GridGenerator
               continue;
 
             // If x,y or z is zero, then this is part of the plane
-            if (cell->face(i)->center()(0) < center(0) + 1.e-5 * radius ||
-                cell->face(i)->center()(1) < center(1) + 1.e-5 * radius ||
-                cell->face(i)->center()(2) < center(2) + 1.e-5 * radius)
+            if (cell->face(i)->center()[0] < center[0] + 1.e-5 * radius ||
+                cell->face(i)->center()[1] < center[1] + 1.e-5 * radius ||
+                cell->face(i)->center()[2] < center[2] + 1.e-5 * radius)
               {
                 cell->face(i)->set_boundary_id(1);
                 cell->face(i)->set_manifold_id(numbers::flat_manifold_id);
@@ -5809,7 +5809,7 @@ namespace GridGenerator
             // If the center is on the plane x=0, this is a planar element. set
             // its boundary indicator. also set the boundary indicators of the
             // bounding faces unless both vertices are on the perimeter
-            if (cell->face(i)->center()(0) < center(0) + 1.e-5 * radius)
+            if (cell->face(i)->center()[0] < center[0] + 1.e-5 * radius)
               {
                 cell->face(i)->set_boundary_id(1);
                 cell->face(i)->set_manifold_id(numbers::flat_manifold_id);
@@ -6298,7 +6298,7 @@ namespace GridGenerator
                 const Triangulation<3>::face_iterator face = cell->face(i);
 
                 const Point<3> face_center(face->center());
-                if (std::abs(face_center(0) - center(0)) >
+                if (std::abs(face_center[0] - center[0]) >
                     1.e-6 * face_center.norm())
                   {
                     if (std::abs((face_center - center).norm() - inner_radius) <
@@ -7306,8 +7306,8 @@ namespace GridGenerator
         for (const unsigned int f : cell->face_indices())
           if (cell->face(f)->at_boundary())
             {
-              const double dx = cell->face(f)->center()(0) - center(0);
-              const double dy = cell->face(f)->center()(1) - center(1);
+              const double dx = cell->face(f)->center()[0] - center[0];
+              const double dy = cell->face(f)->center()[1] - center[1];
               if (colorize)
                 {
                   if (std::abs(dx + outer_radius) < eps)
@@ -7525,9 +7525,9 @@ namespace GridGenerator
         for (const unsigned int f : cell->face_indices())
           if (cell->face(f)->at_boundary())
             {
-              const double dx = cell->face(f)->center()(0);
-              const double dy = cell->face(f)->center()(1);
-              const double dz = cell->face(f)->center()(2);
+              const double dx = cell->face(f)->center()[0];
+              const double dy = cell->face(f)->center()[1];
+              const double dz = cell->face(f)->center()[2];
 
               if (colorize)
                 {
@@ -7558,7 +7558,7 @@ namespace GridGenerator
               else
                 {
                   Point<dim> c   = cell->face(f)->center();
-                  c(2)           = 0;
+                  c[2]           = 0;
                   const double d = c.norm();
                   if (d - inner_radius < 0)
                     {
index f5ba8d62c9b1ba6e28c7e99f4ebdb69017259569..9ad5359c3e6292f834fe0c7718662b9d596f37dd 100644 (file)
@@ -242,15 +242,15 @@ namespace
     Manifold<dim, spacedim>::push_forward(const Point<3> &chart_point) const
     {
       // Rotate the orthogonal direction by the given angle.
-      const double sine_r   = chart_point(0) * std::sin(chart_point(1));
-      const double cosine_r = chart_point(0) * std::cos(chart_point(1));
+      const double sine_r   = chart_point[0] * std::sin(chart_point[1]);
+      const double cosine_r = chart_point[0] * std::cos(chart_point[1]);
 
       const Tensor<1, spacedim> intermediate =
         normal_direction * cosine_r + dxn * sine_r;
 
       // Map the axial coordinate back to the pipe segment.
       const double lambda =
-        chart_point(2) * compute_z_expansion(cosine_r, sine_r, data);
+        chart_point[2] * compute_z_expansion(cosine_r, sine_r, data);
 
       // Finally, put everything together.
       return point_on_axis + direction * lambda + intermediate;
index 7bad170c4f45341f18ab3c1055f095ceff204d46..130fbf8ede308badbe53a209efe92e0444a64bf8 100644 (file)
@@ -212,11 +212,11 @@ GridIn<dim, spacedim>::read_vtk(std::istream &in)
         {
           // VTK format always specifies vertex coordinates with 3 components
           Point<3> x;
-          in >> x(0) >> x(1) >> x(2);
+          in >> x[0] >> x[1] >> x[2];
 
           vertices.emplace_back();
           for (unsigned int d = 0; d < spacedim; ++d)
-            vertices.back()(d) = x(d);
+            vertices.back()[d] = x[d];
         }
     }
 
@@ -683,7 +683,7 @@ GridIn<dim, spacedim>::read_unv(std::istream &in)
       vertices.emplace_back();
 
       for (unsigned int d = 0; d < spacedim; ++d)
-        vertices.back()(d) = x[d];
+        vertices.back()[d] = x[d];
 
       vertex_indices[vertex_index] = n_vertices;
 
@@ -950,7 +950,7 @@ GridIn<dim, spacedim>::read_ucd(std::istream &in,
 
       // store vertex
       for (unsigned int d = 0; d < spacedim; ++d)
-        vertices[vertex](d) = x[d];
+        vertices[vertex][d] = x[d];
       // store mapping; note that
       // vertices_indices[i] is automatically
       // created upon first usage
@@ -2270,7 +2270,7 @@ GridIn<dim, spacedim>::read_msh(std::istream &in)
               in >> vertex_number >> x[0] >> x[1] >> x[2];
 
             for (unsigned int d = 0; d < spacedim; ++d)
-              vertices[global_vertex](d) = x[d];
+              vertices[global_vertex][d] = x[d];
             // store mapping
             vertex_indices[vertex_number] = global_vertex;
 
@@ -3239,13 +3239,13 @@ GridIn<2>::read_tecplot(std::istream &in)
             Utilities::break_text_into_lines(line, 1);
           char *endptr;
           for (unsigned int i = 1; i < first_var.size() + 1; ++i)
-            vertices[i](0) = std::strtod(first_var[i - 1].c_str(), &endptr);
+            vertices[i][0] = std::strtod(first_var[i - 1].c_str(), &endptr);
 
           // if there are many points, the data
           // for this var might continue in the
           // next line(s)
           for (unsigned int j = first_var.size() + 1; j < n_vertices + 1; ++j)
-            in >> vertices[j](next_index);
+            in >> vertices[j][next_index];
           // now we got all values of the first
           // variable, so increase the counter
           next_index = 1;
@@ -3268,7 +3268,7 @@ GridIn<2>::read_tecplot(std::istream &in)
             {
               // we need this line, read it in
               for (unsigned int j = 1; j < n_vertices + 1; ++j)
-                in >> vertices[j](next_index);
+                in >> vertices[j][next_index];
               ++next_index;
             }
           else
@@ -3296,7 +3296,7 @@ GridIn<2>::read_tecplot(std::istream &in)
         Utilities::break_text_into_lines(line, 1);
       char *endptr;
       for (unsigned int d = 0; d < dim; ++d)
-        vertices[1](d) =
+        vertices[1][d] =
           std::strtod(first_vertex[tecplot2deal[d]].c_str(), &endptr);
 
       // read the remaining vertices from the
@@ -3310,7 +3310,7 @@ GridIn<2>::read_tecplot(std::istream &in)
           // of coordinates in the list of
           // variables
           for (unsigned int i = 0; i < dim; ++i)
-            vertices[v](i) = vars[tecplot2deal[i]];
+            vertices[v][i] = vars[tecplot2deal[i]];
         }
     }
 
@@ -4005,10 +4005,10 @@ GridIn<2>::debug_output_grid(const std::vector<CellData<2>> &cells,
                              const std::vector<Point<2>>    &vertices,
                              std::ostream                   &out)
 {
-  double min_x = vertices[cells[0].vertices[0]](0),
-         max_x = vertices[cells[0].vertices[0]](0),
-         min_y = vertices[cells[0].vertices[0]](1),
-         max_y = vertices[cells[0].vertices[0]](1);
+  double min_x = vertices[cells[0].vertices[0]][0],
+         max_x = vertices[cells[0].vertices[0]][0],
+         min_y = vertices[cells[0].vertices[0]][1],
+         max_y = vertices[cells[0].vertices[0]][1];
 
   for (unsigned int i = 0; i < cells.size(); ++i)
     {
@@ -4016,14 +4016,14 @@ GridIn<2>::debug_output_grid(const std::vector<CellData<2>> &cells,
         {
           const Point<2> &p = vertices[vertex];
 
-          if (p(0) < min_x)
-            min_x = p(0);
-          if (p(0) > max_x)
-            max_x = p(0);
-          if (p(1) < min_y)
-            min_y = p(1);
-          if (p(1) > max_y)
-            max_y = p(1);
+          if (p[0] < min_x)
+            min_x = p[0];
+          if (p[0] > max_x)
+            max_x = p[0];
+          if (p[1] < min_y)
+            min_y = p[1];
+          if (p[1] > max_y)
+            max_y = p[1];
         }
 
       out << "# cell " << i << std::endl;
@@ -4032,21 +4032,21 @@ GridIn<2>::debug_output_grid(const std::vector<CellData<2>> &cells,
         center += vertices[vertex];
       center /= 4;
 
-      out << "set label \"" << i << "\" at " << center(0) << ',' << center(1)
+      out << "set label \"" << i << "\" at " << center[0] << ',' << center[1]
           << " center" << std::endl;
 
       // first two line right direction
       for (unsigned int f = 0; f < 2; ++f)
-        out << "set arrow from " << vertices[cells[i].vertices[f]](0) << ','
-            << vertices[cells[i].vertices[f]](1) << " to "
-            << vertices[cells[i].vertices[(f + 1) % 4]](0) << ','
-            << vertices[cells[i].vertices[(f + 1) % 4]](1) << std::endl;
+        out << "set arrow from " << vertices[cells[i].vertices[f]][0] << ','
+            << vertices[cells[i].vertices[f]][1] << " to "
+            << vertices[cells[i].vertices[(f + 1) % 4]][0] << ','
+            << vertices[cells[i].vertices[(f + 1) % 4]][1] << std::endl;
       // other two lines reverse direction
       for (unsigned int f = 2; f < 4; ++f)
-        out << "set arrow from " << vertices[cells[i].vertices[(f + 1) % 4]](0)
-            << ',' << vertices[cells[i].vertices[(f + 1) % 4]](1) << " to "
-            << vertices[cells[i].vertices[f]](0) << ','
-            << vertices[cells[i].vertices[f]](1) << std::endl;
+        out << "set arrow from " << vertices[cells[i].vertices[(f + 1) % 4]][0]
+            << ',' << vertices[cells[i].vertices[(f + 1) % 4]][1] << " to "
+            << vertices[cells[i].vertices[f]][0] << ','
+            << vertices[cells[i].vertices[f]][1] << std::endl;
       out << std::endl;
     }
 
index ff628d015b2dd4b5c4825ff597488f70f856cc47..b8476649dbb8552f12ea8336aff46ed8ee84657c 100644 (file)
@@ -1377,8 +1377,8 @@ GridOut::write_xfig(const Triangulation<2> &tria,
             cell->vertex(GeometryInfo<dim>::ucd_to_deal[k % nv]);
           for (unsigned int d = 0; d < static_cast<unsigned int>(dim); ++d)
             {
-              int val = static_cast<int>(1200 * xfig_flags.scaling(d) *
-                                         (p(d) - xfig_flags.offset(d)));
+              int val = static_cast<int>(1200 * xfig_flags.scaling[d] *
+                                         (p[d] - xfig_flags.offset[d]));
               out << '\t' << ((d == 0) ? val : -val);
             }
           out << std::endl;
@@ -1423,8 +1423,8 @@ GridOut::write_xfig(const Triangulation<2> &tria,
                          ++d)
                       {
                         int val =
-                          static_cast<int>(1200 * xfig_flags.scaling(d) *
-                                           (p(d) - xfig_flags.offset(d)));
+                          static_cast<int>(1200 * xfig_flags.scaling[d] *
+                                           (p[d] - xfig_flags.offset[d]));
                         out << '\t' << ((d == 0) ? val : -val);
                       }
                     out << std::endl;
@@ -4232,7 +4232,7 @@ namespace internal
           boundary_points[0][0]            = 0;
           boundary_points[n_points - 1][0] = 1;
           for (unsigned int i = 1; i < n_points - 1; ++i)
-            boundary_points[i](0) = 1. * i / (n_points - 1);
+            boundary_points[i][0] = 1. * i / (n_points - 1);
 
           std::vector<double> dummy_weights(n_points, 1. / n_points);
           Quadrature<dim - 1> quadrature(boundary_points, dummy_weights);
@@ -4349,7 +4349,7 @@ namespace internal
           boundary_points[0][0]            = 0;
           boundary_points[n_points - 1][0] = 1;
           for (unsigned int i = 1; i < n_points - 1; ++i)
-            boundary_points[i](0) = 1. * i / (n_points - 1);
+            boundary_points[i][0] = 1. * i / (n_points - 1);
 
           std::vector<double> dummy_weights(n_points, 1. / n_points);
           Quadrature<1>       quadrature1d(boundary_points, dummy_weights);
@@ -4755,8 +4755,8 @@ namespace internal
                       // optimize away this
                       // little kludge
                       line_list.emplace_back(
-                        Point<2>(line->vertex(0)(0), line->vertex(0)(1)),
-                        Point<2>(line->vertex(1)(0), line->vertex(1)(1)),
+                        Point<2>(line->vertex(0)[0], line->vertex(0)[1]),
+                        Point<2>(line->vertex(1)[0], line->vertex(1)[1]),
                         line->user_flag_set(),
                         cell->level());
                   }
@@ -4777,7 +4777,7 @@ namespace internal
                   std::vector<Point<dim - 1>> boundary_points(n_points);
 
                   for (unsigned int i = 0; i < n_points; ++i)
-                    boundary_points[i](0) = 1. * (i + 1) / (n_points + 1);
+                    boundary_points[i][0] = 1. * (i + 1) / (n_points + 1);
 
                   Quadrature<dim - 1> quadrature(boundary_points);
                   Quadrature<dim>     q_projector(
@@ -4798,7 +4798,7 @@ namespace internal
                         if (face->at_boundary())
                           {
                             Point<dim> p0_dim(face->vertex(0));
-                            Point<2>   p0(p0_dim(0), p0_dim(1));
+                            Point<2>   p0(p0_dim[0], p0_dim[1]);
 
                             // loop over
                             // all pieces
@@ -4811,7 +4811,7 @@ namespace internal
                                 const Point<dim> p1_dim(
                                   mapping->transform_unit_to_real_cell(
                                     cell, q_projector.point(offset + i)));
-                                const Point<2> p1(p1_dim(0), p1_dim(1));
+                                const Point<2> p1(p1_dim[0], p1_dim[1]);
 
                                 line_list.emplace_back(p0,
                                                        p1,
@@ -4822,7 +4822,7 @@ namespace internal
 
                             // generate last piece
                             const Point<dim> p1_dim(face->vertex(1));
-                            const Point<2>   p1(p1_dim(0), p1_dim(1));
+                            const Point<2>   p1(p1_dim[0], p1_dim[1]);
                             line_list.emplace_back(p0,
                                                    p1,
                                                    face->user_flag_set(),
@@ -4914,9 +4914,9 @@ namespace internal
       // find out minimum and maximum x and
       // y coordinates to compute offsets
       // and scaling factors
-      double       x_min     = tria.begin_active()->vertex(0)(0);
+      double       x_min     = tria.begin_active()->vertex(0)[0];
       double       x_max     = x_min;
-      double       y_min     = tria.begin_active()->vertex(0)(1);
+      double       y_min     = tria.begin_active()->vertex(0)[1];
       double       y_max     = y_min;
       unsigned int max_level = line_list.begin()->level;
 
@@ -4924,17 +4924,17 @@ namespace internal
            line != line_list.end();
            ++line)
         {
-          x_min = std::min(x_min, line->first(0));
-          x_min = std::min(x_min, line->second(0));
+          x_min = std::min(x_min, line->first[0]);
+          x_min = std::min(x_min, line->second[0]);
 
-          x_max = std::max(x_max, line->first(0));
-          x_max = std::max(x_max, line->second(0));
+          x_max = std::max(x_max, line->first[0]);
+          x_max = std::max(x_max, line->second[0]);
 
-          y_min = std::min(y_min, line->first(1));
-          y_min = std::min(y_min, line->second(1));
+          y_min = std::min(y_min, line->first[1]);
+          y_min = std::min(y_min, line->second[1]);
 
-          y_max = std::max(y_max, line->first(1));
-          y_max = std::max(y_max, line->second(1));
+          y_max = std::max(y_max, line->first[1]);
+          y_max = std::max(y_max, line->second[1]);
 
           max_level = std::max(max_level, line->level);
         }
@@ -5054,8 +5054,8 @@ namespace internal
 
           for (const auto &cell : tria.active_cell_iterators())
             {
-              out << (cell->center()(0) - offset(0)) * scale << ' '
-                  << (cell->center()(1) - offset(1)) * scale << " m" << '\n'
+              out << (cell->center()[0] - offset[0]) * scale << ' '
+                  << (cell->center()[1] - offset[1]) * scale << " m" << '\n'
                   << "[ [(Helvetica) 12.0 0.0 true true (";
               if (eps_flags_2.write_cell_number_level)
                 out << cell;
@@ -5084,8 +5084,8 @@ namespace internal
                 {
                   treated_vertices.insert(cell->vertex_index(vertex_no));
 
-                  out << (cell->vertex(vertex_no)(0) - offset(0)) * scale << ' '
-                      << (cell->vertex(vertex_no)(1) - offset(1)) * scale
+                  out << (cell->vertex(vertex_no)[0] - offset[0]) * scale << ' '
+                      << (cell->vertex(vertex_no)[1] - offset[1]) * scale
                       << " m" << '\n'
                       << "[ [(Helvetica) 10.0 0.0 true true ("
                       << cell->vertex_index(vertex_no) << ")] "
index dad68daa4e2114365264ff6ec1cf051a4e1c2aff..b42d5a57d6359e9be0d2cf48fd63f085ef711b75 100644 (file)
@@ -364,8 +364,8 @@ namespace GridTools
                       cell->vertex_dof_index(vertex_no, 0),
                       {},
                       (solve_for_absolute_positions ?
-                         map_iter->second(i) :
-                         map_iter->second(i) - vertex_point[i]));
+                         map_iter->second[i] :
+                         map_iter->second[i] - vertex_point[i]));
                   }
           }
       }
@@ -398,9 +398,9 @@ namespace GridTools
               cell->vertex_dof_index(vertex_no, 0);
             for (unsigned int i = 0; i < dim; ++i)
               if (solve_for_absolute_positions)
-                v(i) = us[i](dof_index);
+                v[i] = us[i](dof_index);
               else
-                v(i) += us[i](dof_index);
+                v[i] += us[i](dof_index);
 
             vertex_touched[cell->vertex_index(vertex_no)] = true;
           }
@@ -525,7 +525,7 @@ namespace GridTools
                   // first compute a random shift vector
                   Point<spacedim> shift_vector;
                   for (unsigned int d = 0; d < spacedim; ++d)
-                    shift_vector(d) = uniform_distribution(rng);
+                    shift_vector[d] = uniform_distribution(rng);
 
                   shift_vector *= factor * minimal_length[global_vertex_no] /
                                   std::sqrt(shift_vector.square());
@@ -562,7 +562,7 @@ namespace GridTools
                 // compute a random shift vector
                 Point<spacedim> shift_vector;
                 for (unsigned int d = 0; d < spacedim; ++d)
-                  shift_vector(d) = uniform_distribution(rng);
+                  shift_vector[d] = uniform_distribution(rng);
 
                 shift_vector *= factor * minimal_length[vertex] /
                                 std::sqrt(shift_vector.square());
index 4c6d30cc3d843a20a4e9170efb8850b0b2e33929..46f47c93af12c6ac44274c446ef7ccbac5db3e7e 100644 (file)
@@ -2387,7 +2387,7 @@ namespace GridTools
     if (matrix.m() == spacedim)
       for (unsigned int i = 0; i < spacedim; ++i)
         for (unsigned int j = 0; j < spacedim; ++j)
-          distance(i) += matrix(i, j) * point1(j);
+          distance[i] += matrix(i, j) * point1[j];
     else
       distance = point1;
 
@@ -2399,7 +2399,7 @@ namespace GridTools
         if (i == direction)
           continue;
 
-        if (std::abs(distance(i)) > 1.e-10)
+        if (std::abs(distance[i]) > 1.e-10)
           return false;
       }
 
index 6f3d4686a6660c8a46327f390bf41d8194c8511d..2e6cff31d46f80d781650e43309a64074a957dcb 100644 (file)
@@ -49,13 +49,13 @@ namespace GridTools
   {
     if (vertex_indices.size() == 3) // triangle
       {
-        const double x[3] = {all_vertices[vertex_indices[0]](0),
-                             all_vertices[vertex_indices[1]](0),
-                             all_vertices[vertex_indices[2]](0)};
+        const double x[3] = {all_vertices[vertex_indices[0]][0],
+                             all_vertices[vertex_indices[1]][0],
+                             all_vertices[vertex_indices[2]][0]};
 
-        const double y[3] = {all_vertices[vertex_indices[0]](1),
-                             all_vertices[vertex_indices[1]](1),
-                             all_vertices[vertex_indices[2]](1)};
+        const double y[3] = {all_vertices[vertex_indices[0]][1],
+                             all_vertices[vertex_indices[1]][1],
+                             all_vertices[vertex_indices[2]][1]};
 
         return 0.5 *
                ((x[0] - x[2]) * (y[1] - y[0]) - (x[1] - x[0]) * (y[0] - y[2]));
@@ -99,15 +99,15 @@ namespace GridTools
       additional optimization: divide by 2 only one time
     */
 
-    const double x[4] = {all_vertices[vertex_indices[0]](0),
-                         all_vertices[vertex_indices[1]](0),
-                         all_vertices[vertex_indices[2]](0),
-                         all_vertices[vertex_indices[3]](0)};
+    const double x[4] = {all_vertices[vertex_indices[0]][0],
+                         all_vertices[vertex_indices[1]][0],
+                         all_vertices[vertex_indices[2]][0],
+                         all_vertices[vertex_indices[3]][0]};
 
-    const double y[4] = {all_vertices[vertex_indices[0]](1),
-                         all_vertices[vertex_indices[1]](1),
-                         all_vertices[vertex_indices[2]](1),
-                         all_vertices[vertex_indices[3]](1)};
+    const double y[4] = {all_vertices[vertex_indices[0]][1],
+                         all_vertices[vertex_indices[1]][1],
+                         all_vertices[vertex_indices[2]][1],
+                         all_vertices[vertex_indices[3]][1]};
 
     return (-x[1] * y[0] + x[1] * y[3] + y[0] * x[2] + x[0] * y[1] -
             x[0] * y[2] - y[1] * x[3] - x[2] * y[3] + x[3] * y[2]) /
@@ -274,30 +274,30 @@ namespace GridTools
 
     AssertDimension(vertex_indices.size(), GeometryInfo<3>::vertices_per_cell);
 
-    const double x[8] = {all_vertices[vertex_indices[0]](0),
-                         all_vertices[vertex_indices[1]](0),
-                         all_vertices[vertex_indices[2]](0),
-                         all_vertices[vertex_indices[3]](0),
-                         all_vertices[vertex_indices[4]](0),
-                         all_vertices[vertex_indices[5]](0),
-                         all_vertices[vertex_indices[6]](0),
-                         all_vertices[vertex_indices[7]](0)};
-    const double y[8] = {all_vertices[vertex_indices[0]](1),
-                         all_vertices[vertex_indices[1]](1),
-                         all_vertices[vertex_indices[2]](1),
-                         all_vertices[vertex_indices[3]](1),
-                         all_vertices[vertex_indices[4]](1),
-                         all_vertices[vertex_indices[5]](1),
-                         all_vertices[vertex_indices[6]](1),
-                         all_vertices[vertex_indices[7]](1)};
-    const double z[8] = {all_vertices[vertex_indices[0]](2),
-                         all_vertices[vertex_indices[1]](2),
-                         all_vertices[vertex_indices[2]](2),
-                         all_vertices[vertex_indices[3]](2),
-                         all_vertices[vertex_indices[4]](2),
-                         all_vertices[vertex_indices[5]](2),
-                         all_vertices[vertex_indices[6]](2),
-                         all_vertices[vertex_indices[7]](2)};
+    const double x[8] = {all_vertices[vertex_indices[0]][0],
+                         all_vertices[vertex_indices[1]][0],
+                         all_vertices[vertex_indices[2]][0],
+                         all_vertices[vertex_indices[3]][0],
+                         all_vertices[vertex_indices[4]][0],
+                         all_vertices[vertex_indices[5]][0],
+                         all_vertices[vertex_indices[6]][0],
+                         all_vertices[vertex_indices[7]][0]};
+    const double y[8] = {all_vertices[vertex_indices[0]][1],
+                         all_vertices[vertex_indices[1]][1],
+                         all_vertices[vertex_indices[2]][1],
+                         all_vertices[vertex_indices[3]][1],
+                         all_vertices[vertex_indices[4]][1],
+                         all_vertices[vertex_indices[5]][1],
+                         all_vertices[vertex_indices[6]][1],
+                         all_vertices[vertex_indices[7]][1]};
+    const double z[8] = {all_vertices[vertex_indices[0]][2],
+                         all_vertices[vertex_indices[1]][2],
+                         all_vertices[vertex_indices[2]][2],
+                         all_vertices[vertex_indices[3]][2],
+                         all_vertices[vertex_indices[4]][2],
+                         all_vertices[vertex_indices[5]][2],
+                         all_vertices[vertex_indices[6]][2],
+                         all_vertices[vertex_indices[7]][2]};
 
     /*
       This is the same Maple script as in the barycenter method above
index 4a6a71bb1b9796640482ec5e96741b97de44b68d..0a27044222298904c25209ed0518aa9ea1aa7497 100644 (file)
@@ -1113,13 +1113,13 @@ CylindricalManifold<dim, spacedim>::push_forward(
          ExcMessage("CylindricalManifold can only be used for spacedim==3!"));
 
   // Rotate the orthogonal direction by the given angle
-  const double sine_r   = std::sin(chart_point(1)) * chart_point(0);
-  const double cosine_r = std::cos(chart_point(1)) * chart_point(0);
+  const double sine_r   = std::sin(chart_point[1]) * chart_point[0];
+  const double cosine_r = std::cos(chart_point[1]) * chart_point[0];
   const Tensor<1, spacedim> intermediate =
     normal_direction * cosine_r + dxn * sine_r;
 
   // Finally, put everything together.
-  return point_on_axis + direction * chart_point(2) + intermediate;
+  return point_on_axis + direction * chart_point[2] + intermediate;
 }
 
 
@@ -1135,8 +1135,8 @@ CylindricalManifold<dim, spacedim>::push_forward_gradient(
   Tensor<2, 3> derivatives;
 
   // Rotate the orthogonal direction by the given angle
-  const double              sine   = std::sin(chart_point(1));
-  const double              cosine = std::cos(chart_point(1));
+  const double              sine   = std::sin(chart_point[1]);
+  const double              cosine = std::cos(chart_point[1]);
   const Tensor<1, spacedim> intermediate =
     normal_direction * cosine + dxn * sine;
 
@@ -1517,9 +1517,9 @@ template <int dim>
 Point<3>
 TorusManifold<dim>::pull_back(const Point<3> &p) const
 {
-  double x     = p(0);
-  double z     = p(1);
-  double y     = p(2);
+  double x     = p[0];
+  double z     = p[1];
+  double y     = p[2];
   double phi   = std::atan2(y, x);
   double theta = std::atan2(z, std::sqrt(x * x + y * y) - R);
   double w =
@@ -1535,9 +1535,9 @@ template <int dim>
 Point<3>
 TorusManifold<dim>::push_forward(const Point<3> &chart_point) const
 {
-  double phi   = chart_point(0);
-  double theta = chart_point(1);
-  double w     = chart_point(2);
+  double phi   = chart_point[0];
+  double theta = chart_point[1];
+  double w     = chart_point[2];
 
   return {std::cos(phi) * R + r * w * std::cos(theta) * std::cos(phi),
           r * w * std::sin(theta),
@@ -1575,9 +1575,9 @@ TorusManifold<dim>::push_forward_gradient(const Point<3> &chart_point) const
 {
   DerivativeForm<1, spacedim, spacedim> DX;
 
-  double phi   = chart_point(0);
-  double theta = chart_point(1);
-  double w     = chart_point(2);
+  double phi   = chart_point[0];
+  double theta = chart_point[1];
+  double w     = chart_point[2];
 
   DX[0][0] = -std::sin(phi) * R - r * w * std::cos(theta) * std::sin(phi);
   DX[0][1] = -r * w * std::sin(theta) * std::cos(phi);
index b9a9c0cfd524ca06626be6eee9ad682a3d509221..4e6d80b33c5b2aa9e2b692769fc5de38d62e2e77 100644 (file)
@@ -186,14 +186,14 @@ namespace
           C(array(1..2, [xs, ys]), optimized);
         */
 
-        const double x[4] = {accessor.vertex(0)(0),
-                             accessor.vertex(1)(0),
-                             accessor.vertex(2)(0),
-                             accessor.vertex(3)(0)};
-        const double y[4] = {accessor.vertex(0)(1),
-                             accessor.vertex(1)(1),
-                             accessor.vertex(2)(1),
-                             accessor.vertex(3)(1)};
+        const double x[4] = {accessor.vertex(0)[0],
+                             accessor.vertex(1)[0],
+                             accessor.vertex(2)[0],
+                             accessor.vertex(3)[0]};
+        const double y[4] = {accessor.vertex(0)[1],
+                             accessor.vertex(1)[1],
+                             accessor.vertex(2)[1],
+                             accessor.vertex(3)[1]};
         const double t1   = x[0] * x[1];
         const double t3   = x[0] * x[0];
         const double t5   = x[1] * x[1];
@@ -314,30 +314,30 @@ namespace
           z[] back to the standard ordering.
         */
 
-        const double x[8] = {accessor.vertex(0)(0),
-                             accessor.vertex(1)(0),
-                             accessor.vertex(5)(0),
-                             accessor.vertex(4)(0),
-                             accessor.vertex(2)(0),
-                             accessor.vertex(3)(0),
-                             accessor.vertex(7)(0),
-                             accessor.vertex(6)(0)};
-        const double y[8] = {accessor.vertex(0)(1),
-                             accessor.vertex(1)(1),
-                             accessor.vertex(5)(1),
-                             accessor.vertex(4)(1),
-                             accessor.vertex(2)(1),
-                             accessor.vertex(3)(1),
-                             accessor.vertex(7)(1),
-                             accessor.vertex(6)(1)};
-        const double z[8] = {accessor.vertex(0)(2),
-                             accessor.vertex(1)(2),
-                             accessor.vertex(5)(2),
-                             accessor.vertex(4)(2),
-                             accessor.vertex(2)(2),
-                             accessor.vertex(3)(2),
-                             accessor.vertex(7)(2),
-                             accessor.vertex(6)(2)};
+        const double x[8] = {accessor.vertex(0)[0],
+                             accessor.vertex(1)[0],
+                             accessor.vertex(5)[0],
+                             accessor.vertex(4)[0],
+                             accessor.vertex(2)[0],
+                             accessor.vertex(3)[0],
+                             accessor.vertex(7)[0],
+                             accessor.vertex(6)[0]};
+        const double y[8] = {accessor.vertex(0)[1],
+                             accessor.vertex(1)[1],
+                             accessor.vertex(5)[1],
+                             accessor.vertex(4)[1],
+                             accessor.vertex(2)[1],
+                             accessor.vertex(3)[1],
+                             accessor.vertex(7)[1],
+                             accessor.vertex(6)[1]};
+        const double z[8] = {accessor.vertex(0)[2],
+                             accessor.vertex(1)[2],
+                             accessor.vertex(5)[2],
+                             accessor.vertex(4)[2],
+                             accessor.vertex(2)[2],
+                             accessor.vertex(3)[2],
+                             accessor.vertex(7)[2],
+                             accessor.vertex(6)[2]};
 
         double s1, s2, s3, s4, s5, s6, s7, s8;
 
index 7fd19bf129417b5a5b6e48159e4f8b24071d23cf..e14dd7093d80ae5295fa40d4e8bc05ab01ad8bec 100644 (file)
@@ -1927,7 +1927,7 @@ namespace NonMatching
 
     const Point<dim> vertex0 =
       box.vertex(GeometryInfo<dim>::face_to_cell_vertices(face_index, 0));
-    const double coordinate_value = vertex0(face_normal_direction);
+    const double coordinate_value = vertex0[face_normal_direction];
 
     const Functions::CoordinateRestriction<dim - 1> face_restriction(
       level_set, face_normal_direction, coordinate_value);
index edd84d2112f91bb84ebf4c727ecb6fc5e0d46904..05845bcedde7727e6a51f8347387fbf459aa5d84 100644 (file)
@@ -148,8 +148,8 @@ DataOutRotation<dim, spacedim>::build_one_patch(
         {
           case 1:
             {
-              const double r1 = (*cell)->vertex(0)(0),
-                           r2 = (*cell)->vertex(1)(0);
+              const double r1 = (*cell)->vertex(0)[0],
+                           r2 = (*cell)->vertex(1)[0];
               Assert(r1 >= 0, ExcRadialVariableHasNegativeValues(r1));
               Assert(r2 >= 0, ExcRadialVariableHasNegativeValues(r2));
 
@@ -169,19 +169,19 @@ DataOutRotation<dim, spacedim>::build_one_patch(
                   const Point<dim> v = (*cell)->vertex(vertex);
 
                   // make sure that the radial variable is nonnegative
-                  Assert(v(0) >= 0, ExcRadialVariableHasNegativeValues(v(0)));
+                  Assert(v[0] >= 0, ExcRadialVariableHasNegativeValues(v[0]));
 
                   // now set the vertices of the patch
                   my_patches[angle].vertices[vertex] =
-                    v(0) * angle_directions[angle];
-                  my_patches[angle].vertices[vertex][0] = v(1);
+                    v[0] * angle_directions[angle];
+                  my_patches[angle].vertices[vertex][0] = v[1];
 
                   my_patches[angle]
                     .vertices[vertex + GeometryInfo<dim>::vertices_per_cell] =
-                    v(0) * angle_directions[angle + 1];
+                    v[0] * angle_directions[angle + 1];
                   my_patches[angle]
                     .vertices[vertex + GeometryInfo<dim>::vertices_per_cell]
-                             [0] = v(1);
+                             [0] = v[1];
                 }
 
               break;
index 49fe7dd2c485b69ff4e0423f62518107bb74892f..3bccab903821c3e3e212917600b4509bc6deaa78 100644 (file)
@@ -339,34 +339,34 @@ DataOutStack<dim, spacedim>::build_patches(const unsigned int nnnn_subdivisions)
         {
           case 1:
             patch->vertices[0] =
-              Point<dim + 1>(cell->vertex(0)(0), parameter - parameter_step);
+              Point<dim + 1>(cell->vertex(0)[0], parameter - parameter_step);
             patch->vertices[1] =
-              Point<dim + 1>(cell->vertex(1)(0), parameter - parameter_step);
-            patch->vertices[2] = Point<dim + 1>(cell->vertex(0)(0), parameter);
-            patch->vertices[3] = Point<dim + 1>(cell->vertex(1)(0), parameter);
+              Point<dim + 1>(cell->vertex(1)[0], parameter - parameter_step);
+            patch->vertices[2] = Point<dim + 1>(cell->vertex(0)[0], parameter);
+            patch->vertices[3] = Point<dim + 1>(cell->vertex(1)[0], parameter);
             break;
 
           case 2:
-            patch->vertices[0] = Point<dim + 1>(cell->vertex(0)(0),
-                                                cell->vertex(0)(1),
+            patch->vertices[0] = Point<dim + 1>(cell->vertex(0)[0],
+                                                cell->vertex(0)[1],
                                                 parameter - parameter_step);
-            patch->vertices[1] = Point<dim + 1>(cell->vertex(1)(0),
-                                                cell->vertex(1)(1),
+            patch->vertices[1] = Point<dim + 1>(cell->vertex(1)[0],
+                                                cell->vertex(1)[1],
                                                 parameter - parameter_step);
-            patch->vertices[2] = Point<dim + 1>(cell->vertex(2)(0),
-                                                cell->vertex(2)(1),
+            patch->vertices[2] = Point<dim + 1>(cell->vertex(2)[0],
+                                                cell->vertex(2)[1],
                                                 parameter - parameter_step);
-            patch->vertices[3] = Point<dim + 1>(cell->vertex(3)(0),
-                                                cell->vertex(3)(1),
+            patch->vertices[3] = Point<dim + 1>(cell->vertex(3)[0],
+                                                cell->vertex(3)[1],
                                                 parameter - parameter_step);
             patch->vertices[4] =
-              Point<dim + 1>(cell->vertex(0)(0), cell->vertex(0)(1), parameter);
+              Point<dim + 1>(cell->vertex(0)[0], cell->vertex(0)[1], parameter);
             patch->vertices[5] =
-              Point<dim + 1>(cell->vertex(1)(0), cell->vertex(1)(1), parameter);
+              Point<dim + 1>(cell->vertex(1)[0], cell->vertex(1)[1], parameter);
             patch->vertices[6] =
-              Point<dim + 1>(cell->vertex(2)(0), cell->vertex(2)(1), parameter);
+              Point<dim + 1>(cell->vertex(2)[0], cell->vertex(2)[1], parameter);
             patch->vertices[7] =
-              Point<dim + 1>(cell->vertex(3)(0), cell->vertex(3)(1), parameter);
+              Point<dim + 1>(cell->vertex(3)[0], cell->vertex(3)[1], parameter);
             break;
 
           default:
index 26bb888eb623248d0a83b64c1544ed3d012899b7..e0685cbe7770a317c1f76db3ee36c8ad7a21bd9c 100644 (file)
@@ -87,12 +87,12 @@ namespace Particles
 
     Point<spacedim> location;
     for (unsigned int i = 0; i < spacedim; ++i)
-      location(i) = *pdata++;
+      location[i] = *pdata++;
     set_location(location);
 
     Point<dim> reference_location;
     for (unsigned int i = 0; i < dim; ++i)
-      reference_location(i) = *pdata++;
+      reference_location[i] = *pdata++;
     set_reference_location(reference_location);
 
     // See if there are properties to load
@@ -259,12 +259,12 @@ namespace Particles
 
     Point<spacedim> location;
     for (unsigned int i = 0; i < spacedim; ++i)
-      location(i) = *pdata++;
+      location[i] = *pdata++;
     set_location(location);
 
     Point<dim> reference_location;
     for (unsigned int i = 0; i < dim; ++i)
-      reference_location(i) = *pdata++;
+      reference_location[i] = *pdata++;
     set_reference_location(reference_location);
 
     // See if there are properties to load

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.