* `number` by `operator=`.
*/
template <std::size_t n_entries, typename Number2>
- void
- values_of_array(const std::array<Number2, n_entries> &points,
- const unsigned int n_derivatives,
- std::array<Number2, n_entries> *values) const;
+#ifndef DEBUG
+ DEAL_II_ALWAYS_INLINE
+#endif
+ void
+ values_of_array(const std::array<Number2, n_entries> &points,
+ const unsigned int n_derivatives,
+ std::array<Number2, n_entries> *values) const;
/**
* Degree of the polynomial. This is the degree reflected by the number of
template <typename number>
template <std::size_t n_entries, typename Number2>
- inline void
- Polynomial<number>::values_of_array(
- const std::array<Number2, n_entries> &x,
- const unsigned int n_derivatives,
- std::array<Number2, n_entries> *values) const
+ inline
+#ifndef DEBUG
+ DEAL_II_ALWAYS_INLINE
+#endif
+ void
+ Polynomial<number>::values_of_array(
+ const std::array<Number2, n_entries> &x,
+ const unsigned int n_derivatives,
+ std::array<Number2, n_entries> *values) const
{
// evaluate Lagrange polynomial and derivatives
if (in_lagrange_product_form == true)