bool
empty() const;
- /**
- * Check if a value at a certain position may be non-zero.
- */
- bool
- exists(const size_type i, const size_type j) const;
-
- /**
- * This is the inverse operation to operator()(): given a global index, find
- * out row and column of the matrix entry to which it belongs. The returned
- * value is the pair composed of row and column index.
- *
- * This function may only be called if the sparsity pattern is closed. The
- * global index must then be between zero and n_nonzero_elements().
- *
- * If <tt>N</tt> is the number of rows of this matrix, then the complexity
- * of this function is <i>log(N)</i>.
- */
- std::pair<size_type, size_type>
- matrix_position(const std::size_t global_index) const;
-
/**
* Compute the bandwidth of the matrix represented by this structure. The
* bandwidth is the maximum of $|i-j|$ for which the index pair $(i,j)$
size_type
operator()(const size_type i, const size_type j) const;
+ /**
+ * Check if a value at a certain position may be non-zero.
+ */
+ bool
+ exists(const size_type i, const size_type j) const;
+
/**
* Access to column number field. Return the column number of the
* <tt>index</tt>th entry in <tt>row</tt>. Note that if diagonal elements
size_type
column_number(const size_type row, const unsigned int index) const;
+ /**
+ * This is the inverse operation to operator()(): given a global index, find
+ * out row and column of the matrix entry to which it belongs. The returned
+ * value is the pair composed of row and column index.
+ *
+ * This function may only be called if the sparsity pattern is closed. The
+ * global index must then be between zero and n_nonzero_elements().
+ *
+ * If <tt>N</tt> is the number of rows of this matrix, then the complexity
+ * of this function is <i>log(N)</i>.
+ */
+ std::pair<size_type, size_type>
+ matrix_position(const std::size_t global_index) const;
+
/**
* The index of a global matrix entry in its row.
*
-inline bool
-SparsityPattern::operator==(const SparsityPattern &sp2) const
-{
- if (store_diagonal_first_in_row != sp2.store_diagonal_first_in_row)
- return false;
-
- // it isn't quite necessary to compare *all* member variables. by only
- // comparing the essential ones, we can say that two sparsity patterns are
- // equal even if one is compressed and the other is not (in which case some
- // of the member variables are not yet set correctly)
- if (rows != sp2.rows || cols != sp2.cols || compressed != sp2.compressed)
- return false;
-
- if (rows > 0)
- {
- for (size_type i = 0; i < rows + 1; ++i)
- if (rowstart[i] != sp2.rowstart[i])
- return false;
-
- for (size_type i = 0; i < rowstart[rows]; ++i)
- if (colnums[i] != sp2.colnums[i])
- return false;
- }
-
- return true;
-}
-
-
-
namespace internal
{
namespace SparsityPatternTools
+SparsityPattern::size_type
+SparsityPattern::operator()(const size_type i, const size_type j) const
+{
+ Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject());
+ AssertIndexRange(i, n_rows());
+ AssertIndexRange(j, n_cols());
+ Assert(compressed, ExcNotCompressed());
+
+ // let's see whether there is something in this line
+ if (rowstart[i] == rowstart[i + 1])
+ return invalid_entry;
+
+ // If special storage of diagonals was requested, we can get the diagonal
+ // element faster by this query.
+ if (store_diagonal_first_in_row && (i == j))
+ return rowstart[i];
+
+ // all other entries are sorted, so we can use a binary search algorithm
+ //
+ // note that the entries are only sorted upon compression, so this would
+ // fail for non-compressed sparsity patterns; however, that is why the
+ // Assertion is at the top of this function, so it may not be called for
+ // noncompressed structures.
+ const size_type *sorted_region_start =
+ (store_diagonal_first_in_row ? &colnums[rowstart[i] + 1] :
+ &colnums[rowstart[i]]);
+ const size_type *const p =
+ Utilities::lower_bound<const size_type *>(sorted_region_start,
+ &colnums[rowstart[i + 1]],
+ j);
+ if ((p != &colnums[rowstart[i + 1]]) && (*p == j))
+ return (p - colnums.get());
+ else
+ return invalid_entry;
+}
+
+
+
bool
SparsityPattern::exists(const size_type i, const size_type j) const
{
+SparsityPattern::size_type
+SparsityPattern::row_position(const size_type i, const size_type j) const
+{
+ Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject());
+ AssertIndexRange(i, n_rows());
+ AssertIndexRange(j, n_cols());
+
+ for (size_type k = rowstart[i]; k < rowstart[i + 1]; ++k)
+ {
+ // entry exists
+ if (colnums[k] == j)
+ return k - rowstart[i];
+ }
+ return numbers::invalid_size_type;
+}
+
+
+
SparsityPattern::size_type
SparsityPattern::bandwidth() const
{
-SparsityPattern::size_type
-SparsityPattern::operator()(const size_type i, const size_type j) const
-{
- Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject());
- AssertIndexRange(i, n_rows());
- AssertIndexRange(j, n_cols());
- Assert(compressed, ExcNotCompressed());
-
- // let's see whether there is something in this line
- if (rowstart[i] == rowstart[i + 1])
- return invalid_entry;
-
- // If special storage of diagonals was requested, we can get the diagonal
- // element faster by this query.
- if (store_diagonal_first_in_row && (i == j))
- return rowstart[i];
-
- // all other entries are sorted, so we can use a binary search algorithm
- //
- // note that the entries are only sorted upon compression, so this would
- // fail for non-compressed sparsity patterns; however, that is why the
- // Assertion is at the top of this function, so it may not be called for
- // noncompressed structures.
- const size_type *sorted_region_start =
- (store_diagonal_first_in_row ? &colnums[rowstart[i] + 1] :
- &colnums[rowstart[i]]);
- const size_type *const p =
- Utilities::lower_bound<const size_type *>(sorted_region_start,
- &colnums[rowstart[i + 1]],
- j);
- if ((p != &colnums[rowstart[i + 1]]) && (*p == j))
- return (p - colnums.get());
- else
- return invalid_entry;
-}
-
-
-
void
SparsityPattern::add(const size_type i, const size_type j)
{
-SparsityPattern::size_type
-SparsityPattern::row_position(const size_type i, const size_type j) const
+bool
+SparsityPattern::operator==(const SparsityPattern &sp2) const
{
- Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject());
- AssertIndexRange(i, n_rows());
- AssertIndexRange(j, n_cols());
+ if (store_diagonal_first_in_row != sp2.store_diagonal_first_in_row)
+ return false;
- for (size_type k = rowstart[i]; k < rowstart[i + 1]; ++k)
+ // it isn't quite necessary to compare *all* member variables. by only
+ // comparing the essential ones, we can say that two sparsity patterns are
+ // equal even if one is compressed and the other is not (in which case some
+ // of the member variables are not yet set correctly)
+ if (rows != sp2.rows || cols != sp2.cols || compressed != sp2.compressed)
+ return false;
+
+ if (rows > 0)
{
- // entry exists
- if (colnums[k] == j)
- return k - rowstart[i];
+ for (size_type i = 0; i < rows + 1; ++i)
+ if (rowstart[i] != sp2.rowstart[i])
+ return false;
+
+ for (size_type i = 0; i < rowstart[rows]; ++i)
+ if (colnums[i] != sp2.colnums[i])
+ return false;
}
- return numbers::invalid_size_type;
+
+ return true;
}