* m x n matrix A and a p x q matrix B is an (m*p) x (n*q) matrix defined as:
*
* ```
- * A ⊗ B = | a11*B a12*B ... a1n*B |
- * | a21*B a22*B ... a2n*B |
- * | ... ... ... ... |
- * | am1*B am2*B ... amn*B |
+ * A ⊗ B = | a11*B a12*B ... a1n*B |
+ * | a21*B a22*B ... a2n*B |
+ * | ... ... ... ... |
+ * | am1*B am2*B ... amn*B |
* ```
*
* where aij are the elements of the matrix A.
const unsigned int degree = fe.degree;
const unsigned int n_dofs_per_cell = fe.dofs_per_cell;
- const Number &JxW = h;
QGauss<1> quadrature(degree + 1);
FullMatrix<Number> cell_matrix(n_dofs_per_cell, n_dofs_per_cell);
cell_matrix(i - shift, j - shift) +=
(fe.shape_value(numbering[i], quadrature.point(q)) *
fe.shape_value(numbering[j], quadrature.point(q))) *
- JxW * quadrature.weight(q);
+ (h * quadrature.weight(q));
return cell_matrix;
}
cell_matrix(i - shift, j - shift) +=
(fe.shape_grad(numbering[i], quadrature.point(q)) / h *
fe.shape_grad(numbering[j], quadrature.point(q))) /
- h * JxW * quadrature.weight(q);
+ h * (h * quadrature.weight(q));
return cell_matrix;
}