/**
* The dot product (single contraction) for tensors: Return a tensor of
- * rank $(\text{rank_1} + \text{rank_2} - 2)$ that is the contraction of
+ * rank $(\text{rank}_1 + \text{rank}_2 - 2)$ that is the contraction of
* the last index of a tensor @p src1 of rank @p rank_1 with the first
* index of a tensor @p src2 of rank @p rank_2:
* @f[
/**
* Generic contraction of a pair of indices of two tensors of arbitrary
- * rank: Return a tensor of rank $(\text{rank_1} + \text{rank_2} - 2)$ that
+ * rank: Return a tensor of rank $(\text{rank}_1 + \text{rank}_2 - 2)$ that
* is the contraction of index @p index_1 of a tensor @p src1 of rank
* @p rank_1 with the index @p index_2 of a tensor @p src2 of rank @p rank_2:
* @f[
* @endcode
*
* @note The position of the index is counted from 0, i.e.,
- * $0\le\text{index_i}<\text{range_i}$.
+ * $0\le\text{index}_i<\text{range}_i$.
*
* @note In case the contraction yields a tensor of rank 0 the scalar
* number is returned as an unwrapped number type.
/**
* Generic contraction of two pairs of indices of two tensors of
* arbitrary rank: Return a tensor of rank
- * $(\text{rank_1} + \text{rank_2} - 4)$ that is the contraction of index
+ * $(\text{rank}_1 + \text{rank}_2 - 4)$ that is the contraction of index
* @p index_1 with index @p index_2, and index @p index_3 with index
* @p index_4 of a tensor @p src1 of rank @p rank_1 and a tensor @p src2 of
* rank @p rank_2:
* @endcode
*
* @note The position of the index is counted from 0, i.e.,
- * $0\le\text{index_i}<\text{range_i}$.
+ * $0\le\text{index}_i<\text{range}_i$.
*
* @note In case the contraction yields a tensor of rank 0 the scalar
* number is returned as an unwrapped number type.
/**
* Full contraction of three tensors: Return a scalar number that is the
* result of a full contraction of a tensor @p left of rank @p rank_1, a
- * tensor @p middle of rank $(\text{rank_1}+\text{rank_2})$ and a tensor @p
+ * tensor @p middle of rank $(\text{rank}_1+\text{rank}_2)$ and a tensor @p
* right of rank @p rank_2:
* @f[
* \sum_{i_1,..,i_{r1},j_1,..,j_{r2}}
/**
* The outer product of two tensors of @p rank_1 and @p rank_2: Returns a
- * tensor of rank $(\text{rank_1} + \text{rank_2})$:
+ * tensor of rank $(\text{rank}_1 + \text{rank}_2)$:
* @f[
* \text{result}_{i_1,..,i_{r1},j_1,..,j_{r2}}
* = \text{left}_{i_1,..,i_{r1}}\,\text{right}_{j_1,..,j_{r2}.}
*
* @f[
* \text{result}_{i_1,..,i_{r1},j_1,..,j_{r2}}
- * = \sum_{k_1,..,k_{\text{no_contr}}}
- * \text{left}_{i_1,..,i_{r1},k_1,..,k_{\text{no_contr}}}
- * \text{right}_{j_1,..,j_{r2},k_1,..,k_{\text{no_contr}}}
+ * = \sum_{k_1,..,k_{\text{no\_contr}}}
+ * \text{left}_{i_1,..,i_{r1},k_1,..,k_{\text{no\_contr}}}
+ * \text{right}_{j_1,..,j_{r2},k_1,..,k_{\text{no\_contr}}}
* @f]
*
* Calling this function is equivalent of writing the following low level