ExcInternalError());
Assert (neighbor->has_children(),
ExcInternalError());
+ (void) neighbor;
// Then find out which neighbor the present cell is of the adjacent
// cell. Note that we will operate on the children of this adjacent
sigma_s (n_materials, n_groups, n_groups),
chi (n_materials, n_groups)
{
- switch (n_groups)
+ switch (this->n_groups)
{
case 2:
{
(Triangulation<dim>::smoothing_on_refinement |
Triangulation<dim>::smoothing_on_coarsening)),
+ global_Omega_diameter(0.),
+
mapping (4),
stokes_fe (FE_Q<dim>(parameters.stokes_velocity_degree),
AllParameters<dim>::BoundaryConditions::BoundaryConditions ()
:
values (EulerEquations<dim>::n_components)
- {}
+ {
+ for (unsigned int c=0; c<EulerEquations<dim>::n_components; ++c)
+ kind[c] = EulerEquations<dim>::no_penetration_boundary;
+ }
template <int dim>
AllParameters<dim>::AllParameters ()
:
+ diffusion_power(0.),
+ time_step(1.),
+ final_time(1.),
+ theta(.5),
+ is_stationary(true),
initial_conditions (EulerEquations<dim>::n_components)
{}
fe(fe_degree),
dh(tria),
mapping(mapping_degree, true),
- wind(dim)
+ wind(dim),
+ singular_quadrature_order(5),
+ n_cycles(4),
+ external_refinement(5),
+ run_in_this_dimension(true),
+ extend_solution(true)
{}
#endif
fe (degree_finite_element),
dof_handler (triangulation),
+ setup_time(0.),
pcout (std::cout, Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0),
// The LaplaceProblem class holds an additional output stream that
// collects detailed timings about the setup phase. This stream, called
Solid<dim>::Solid(const std::string &input_file)
:
parameters(input_file),
+ vol_reference(0.),
triangulation(Triangulation<dim>::maximum_smoothing),
time(parameters.end_time, parameters.delta_t),
timer(std::cout,
dof_handler (triangulation),
n_global_refinements (10-2*dim),
time (-10),
+ time_step(10.),
final_time (10),
cfl_number (.1/fe_degree),
output_timestep_skip (200)