]> https://gitweb.dealii.org/ - release-papers.git/commitdiff
Added additional sentence describing the hp-interface. 49/head
authorMarc Fehling <marc.fehling@gmx.net>
Thu, 28 May 2020 18:02:48 +0000 (20:02 +0200)
committerMarc Fehling <marc.fehling@gmx.net>
Thu, 28 May 2020 18:02:50 +0000 (20:02 +0200)
Format code in listing.

9.2/paper.tex

index bdcb88dfa406ef4b11853b11bc775c002b49163c..c61ab85156f09c52d47f751cf861ec23da131c95 100644 (file)
@@ -519,20 +519,22 @@ Consider the following (incomplete) listing as an example: We estimate both erro
 smoothness of the finite element approximation. Further, we flag certain fractions of
 cells with the highest and lowest errors for refinement and coarsening, respectively
 (here: 30\%/3\%). From those cells listed for adaptation, we designate a subset
-for $h$- and $p$-adaptation (here: 10\%/90\%).
+for $h$- and $p$-adaptation (here: 10\%/90\%). The parameters of the corresponding
+\texttt{hp::Refinement} function specify the fraction of cells to be $p$-adapted from
+those subsets flagged for refinement and coarsening, respectively.
 \begin{c++}
-Vector<float> estimated_error_per_cell (n_active_cells);
+Vector<float> estimated_error_per_cell(n_active_cells);
 KellyErrorEstimator::estimate(
   dof_handler, ..., solution, estimated_error_per_cell, ...);
 GridRefinement::refine_and_coarsen_fixed_number(
   triangulation, estimated_error_per_cell, 0.3, 0.03);
 
-Vector<float> estimated_smoothness_per_cell (n_active_cells);
+Vector<float> estimated_smoothness_per_cell(n_active_cells);
 SmoothnessEstimator::Legendre::coefficient_decay(
   ..., dof_handler, solution, estimated_smoothness_per_cell);
 hp::Refinement::p_adaptivity_fixed_number(
   dof_handler, estimated_smoothness_per_cell, 0.9, 0.9);
-hp::Refinement::choose_p_over_h (dof_handler);
+hp::Refinement::choose_p_over_h(dof_handler);
 
 triangulation.execute_coarsening_and_refinement();
 \end{c++}
@@ -542,8 +544,7 @@ smoothness estimation, and made sure that they work for refinement as well as
 coarsening in terms of $h$- and $p$-adaptation in serial and parallel applications.
 
 The former relies on knowing an estimate for the upper error bound \cite[Thm.~3.4]{BabuskaSuri1990}.
-For successive refinements, we can predict how the error will change
-based on
+For successive refinements, we can predict how the error will change based on
 current error estimates and adaptation flags. In the next refinement cycle, these
 predicted error estimates allow us to decide whether the choice of adaptation in
 the previous cycle was justified, and provide a criterion for the choice in the next

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.