* S_{00} & S_{01} & S_{02} \\
* S_{10} = S_{01} & S_{11} & S_{12} \\
* S_{20} = S_{02} & S_{21} = S_{12} & S_{22}
- * \end{array}\right]
+ * \end{array} \right]
* \quad \Rightarrow \quad
* \left[ \begin{array}{ccc}
* n = 0 & n = 5 & n = 4 \\
* sym & n = 1 & n = 3 \\
- * sym & sym & n = 2}
- * \end{array}\right] ,
+ * sym & sym & n = 2
+ * \end{array} \right] ,
* @f]
* where $n$ denotes the Kelvin index for the tensor component,
* while for a general rank-2 tensor $\mathbf{T}$
* \left[ \begin{array}{ccc}
* n = 0 & n = 5 & n = 4 \\
* n = 6 & n = 1 & n = 3 \\
- * n = 7 & n = 8 & n = 2}
+ * n = 7 & n = 8 & n = 2
* \end{array}\right] ,
* @f]
* and for a rank-1 tensor $\mathbf{v}$
* @f[
- * \mathbf{v} := \left[ \begin{array}{ccc}
- * v_{0} & v_{1} & v_{2}
- * \end{array}\right]^{T}
+ * \mathbf{v} := \left[ \begin{array}{c}
+ * v_{0} \\ v_{1} \\ v_{2}
+ * \end{array}\right]
* \quad \Rightarrow \quad
- * \left[ \begin{array}{ccc}
- * n = 0 & n = 1 & n = 2
- * \end{array}\right]^{T} .
+ * \left[ \begin{array}{c}
+ * n = 0 \\ n = 1 \\ n = 2
+ * \end{array}\right] .
* @f]
* To summarize, the relationship between tensor and Kelvin indices for both
* the three-dimensional case and the analogously discerned two-dimensional
* @f[
* \mathbf{S} = \cal{C} : \mathbf{E}
* \quad \Rightarrow \quad
- * \tilde{\mathbf{S}} = \tilde{\cal{C}} \tilde{\mathbf{E}}
+ * \tilde{\mathbf{S}} = \tilde{\cal{C}} \; \tilde{\mathbf{E}}
* @f]
* and
* @f[