IntegratedLegendreSZ (const unsigned int p);
/**
- * Returns the complete set of Integrated Legendre polynomials up to the
+ * Return the complete set of Integrated Legendre polynomials up to the
* given degree.
*/
static std::vector<Polynomials::Polynomial<double>> generate_complete_basis (const unsigned int degree);
* synchronized over all processors in the communicator (i.e., the lap times
* are set to the maximum lap time).
*
- * Returns the accumulated CPU time in seconds.
+ * Return the accumulated CPU time in seconds.
*/
double stop ();
double last_cpu_time() const;
/**
- * Returns the wall time taken between the last start()/stop() call.
+ * Return the wall time taken between the last start()/stop() call.
*
* @deprecated Use last_wall_time() instead.
*/
/**
- * Returns whether q1 and q2 are equal
+ * Return whether q1 and q2 are equal
*/
template <int dim>
bool
/**
- * Returns whether q1 is an ancestor of q2
+ * Return whether q1 is an ancestor of q2
*/
template <int dim>
bool
/**
- * Returns whether the children of a coarse cell are stored locally
+ * Return whether the children of a coarse cell are stored locally
*/
template <int dim>
bool
vertex_to_cell_map(const Triangulation<dim,spacedim> &triangulation);
/**
- * Returns a vector of normalized tensors for each vertex-cell combination of
+ * Return a vector of normalized tensors for each vertex-cell combination of
* the output of GridTools::vertex_to_cell_map() (which is expected as input
* parameter for this function). Each tensor represents a geometric vector
* from the vertex to the respective cell center.
/**
- * Returns the local vertex index of cell @p cell that is closest to
+ * Return the local vertex index of cell @p cell that is closest to
* the given location @p position.
*
* @author Rene Gassmoeller, Luca Heltai, 2017.
* chart_points with the pullbacks of the surrounding points. This method
* internally calls @p get_possible_cells_around_points().
*
- * Returns an iterator to the cell on which the chart is defined.
+ * Return an iterator to the cell on which the chart is defined.
*/
typename Triangulation<dim,spacedim>::cell_iterator
compute_chart_points(const ArrayView<const Point<spacedim>> &surrounding_points,
void compress (VectorOperation::values operation);
/**
- * Returns a reference to the underlying vector for manipulation of the
+ * Return a reference to the underlying vector for manipulation of the
* entries on the matrix diagonal.
*/
VectorType &get_vector();
void clear();
/**
- * Returns a read-only reference to the underlying vector.
+ * Return a read-only reference to the underlying vector.
*/
const VectorType &get_vector() const;
/**
- * Returns a payload configured for identity operations
+ * Return a payload configured for identity operations
*/
EmptyPayload
identity_payload () const
/**
- * Returns a payload configured for null operations
+ * Return a payload configured for null operations
*/
EmptyPayload
null_payload () const
/**
- * Returns a payload configured for transpose operations
+ * Return a payload configured for transpose operations
*/
EmptyPayload
transpose_payload () const
/**
- * Returns a payload configured for inverse operations
+ * Return a payload configured for inverse operations
*/
template <typename Solver, typename Preconditioner>
EmptyPayload
{
public:
/**
- * Returns the number of rows of the tensor product matrix
+ * Return the number of rows of the tensor product matrix
* resulting from the Kronecker product of 1D matrices, which is described
* in the main documentation of TensorProductMatrixSymmetricSum.
*/
unsigned int m () const;
/**
- * Returns the number of columns of the tensor product matrix
+ * Return the number of columns of the tensor product matrix
* resulting from the Kronecker product of 1D matrices, which is described
* in the main documentation of TensorProductMatrixSymmetricSum.
*/
virtual ~TrilinosPayload() = default;
/**
- * Returns a payload configured for identity operations
+ * Return a payload configured for identity operations
*/
TrilinosPayload identity_payload () const;
/**
- * Returns a payload configured for null operations
+ * Return a payload configured for null operations
*/
TrilinosPayload null_payload () const;
/**
- * Returns a payload configured for transpose operations
+ * Return a payload configured for transpose operations
*/
TrilinosPayload transpose_payload () const;
/**
- * Returns a payload configured for inverse operations
+ * Return a payload configured for inverse operations
*
* Invoking this factory function will configure two additional functions,
* namely <tt>inv_vmult</tt> and <tt>inv_Tvmult</tt>, both of which wrap
inverse_payload (Solver &, const Preconditioner &) const;
/**
- * Returns a payload configured for inverse operations
+ * Return a payload configured for inverse operations
*
* Invoking this factory function will configure two additional functions,
* namely <tt>inv_vmult</tt> and <tt>inv_Tvmult</tt>, both of which
//@{
/**
- * Returns an IndexSet that defines the partitioning of the domain space
+ * Return an IndexSet that defines the partitioning of the domain space
* of this matrix, i.e., the partitioning of the vectors this matrix has
* to be multiplied with / operate on.
*/
locally_owned_domain_indices () const;
/**
- * Returns an IndexSet that defines the partitioning of the range space
+ * Return an IndexSet that defines the partitioning of the range space
* of this matrix, i.e., the partitioning of the vectors that result
* from matrix-vector products.
*/
//@{
/**
- * Returns a label to describe this class.
+ * Return a label to describe this class.
*
* This overloads the same function from the Trilinos class
* Epetra_Operator.
Label () const;
/**
- * Returns a reference to the underlying MPI communicator for
+ * Return a reference to the underlying MPI communicator for
* this object.
*
* This overloads the same function from the Trilinos class
Epetra_Map range_map;
/**
- * Returns a flag that describes whether this operator can return the
+ * Return a flag that describes whether this operator can return the
* computation of the infinity norm. Since in general this is not the
* case, this always returns a negetive result.
*
HasNormInf () const;
/**
- * Returns the infinity norm of this operator.
+ * Return the infinity norm of this operator.
* Throws an error since, in general, we cannot compute this value.
*
* This overloads the same function from the Trilinos class
};
/**
- * Returns an operator that returns a payload configured to support the
+ * Return an operator that returns a payload configured to support the
* addition of two LinearOperators
*/
TrilinosPayload operator+(const TrilinosPayload &first_op,
const TrilinosPayload &second_op);
/**
- * Returns an operator that returns a payload configured to support the
+ * Return an operator that returns a payload configured to support the
* multiplication of two LinearOperators
*/
TrilinosPayload operator*(const TrilinosPayload &first_op,
get_internal_dof_numbering() const;
/**
- * Returns an ArrayView to internal memory for temporary use. Note that some
+ * Return an ArrayView to internal memory for temporary use. Note that some
* of this memory is overwritten during evaluate() and integrate() calls so
* do not assume it to be stable over those calls. The maximum size you can
* write into is 3*dofs_per_cell+2*n_q_points.
*/
//@{
/**
- * Returns whether a given FiniteElement @p fe is supported by this class.
+ * Return whether a given FiniteElement @p fe is supported by this class.
*/
template <int spacedim>
static
const VectorType &src) const;
/**
- * Returns the value of the matrix entry (row,col). In matrix-free context
+ * Return the value of the matrix entry (row,col). In matrix-free context
* this function is valid only for row==col when diagonal is initialized.
*/
value_type el (const unsigned int row,
std::vector <std::vector <double> > independent_values;
/**
- * Saves a vector listing component names associated with a
+ * Save a vector listing component names associated with a
* independent_values. This will be an empty vector if the user does not
* supplies names.
*/
std::vector<std::string> indep_names;
/**
- * Saves data for each mnemonic entry. data_store: mnemonic ->
+ * Save data for each mnemonic entry. data_store: mnemonic ->
* [point_0_components point_1_components ... point_n-1_components][key]
* This format facilitates scalar mnemonics in a vector space, because
* scalar mnemonics will only have one component per point. Vector
std::map <std::string, std::vector <std::vector <double> > > data_store;
/**
- * Saves a component mask for each mnemonic.
+ * Save a component mask for each mnemonic.
*/
std::map <std::string, ComponentMask> component_mask;
/**
- * Saves a vector listing component names associated with a mnemonic. This
+ * Save a vector listing component names associated with a mnemonic. This
* will be an empty vector if the user does not supplies names.
*/
std::map <std::string, std::vector<std::string> > component_names_map;
/**
- * Saves the location and other mesh info about support points.
+ * Save the location and other mesh info about support points.
*/
std::vector <internal::PointValueHistory::PointGeometryData <dim> >
point_geometry_data;
VectorAdaptor (const Teuchos::RCP<VectorType> &vector_ptr);
/**
- * Returns the Teuchos smart reference counting pointer to
+ * Return the Teuchos smart reference counting pointer to
* the wrapper vector, #vector_ptr.
*/
Teuchos::RCP<VectorType> getVector ();
/**
- * Returns the Teuchos smart reference counting pointer to const vector.
+ * Return the Teuchos smart reference counting pointer to const vector.
*/
Teuchos::RCP<const VectorType> getVector () const;
set_property_pool(PropertyPool &property_pool);
/**
- * Returns whether this particle has a valid property pool and a valid
+ * Return whether this particle has a valid property pool and a valid
* handle to properties.
*/
bool
get_properties () const;
/**
- * Returns the size in bytes this particle occupies if all of its data is
+ * Return the size in bytes this particle occupies if all of its data is
* serialized (i.e. the number of bytes that is written by the write_data
* function of this class).
*/
set_property_pool(PropertyPool &property_pool);
/**
- * Returns whether this particle has a valid property pool and a valid
+ * Return whether this particle has a valid property pool and a valid
* handle to properties.
*/
bool
get_properties () const;
/**
- * Returns the size in bytes this particle occupies if all of its data is
+ * Return the size in bytes this particle occupies if all of its data is
* serialized (i.e. the number of bytes that is written by the write_data
* function of this class).
*/
PropertyPool (const unsigned int n_properties_per_slot=1);
/**
- * Returns a new handle that allows accessing the reserved block
+ * Return a new handle that allows accessing the reserved block
* of memory.
*/
Handle allocate_properties_array ();
void reserve(const std::size_t size);
/**
- * Returns how many properties are stored per slot in the pool.
+ * Return how many properties are stored per slot in the pool.
*/
unsigned int n_properties_per_slot() const;
//@{
/**
- * Returns the deformation gradient tensor,
+ * Return the deformation gradient tensor,
* as constructed from the material displacement gradient
* tensor @p Grad_u.
* The result is expressed as
F (const Tensor<2, dim, Number> &Grad_u);
/**
- * Returns the isochoric counterpart of the deformation gradient
+ * Return the isochoric counterpart of the deformation gradient
* tensor @p F .
* The result is expressed as
* @f[
F_iso (const Tensor<2, dim, Number> &F);
/**
- * Returns the volumetric counterpart of the deformation gradient
+ * Return the volumetric counterpart of the deformation gradient
* tensor @p F .
* The result is expressed as
* @f[
F_vol (const Tensor<2, dim, Number> &F);
/**
- * Returns the symmetric right Cauchy-Green deformation tensor,
+ * Return the symmetric right Cauchy-Green deformation tensor,
* as constructed from the deformation gradient tensor @p F.
* The result is expressed as
* @f[
C (const Tensor<2, dim, Number> &F);
/**
- * Returns the symmetric left Cauchy-Green deformation tensor,
+ * Return the symmetric left Cauchy-Green deformation tensor,
* as constructed from the deformation gradient tensor @p F.
* The result is expressed as
* @f[
//@{
/**
- * Returns the symmetric Green-Lagrange strain tensor,
+ * Return the symmetric Green-Lagrange strain tensor,
* as constructed from the deformation gradient tensor @p F.
* The result is expressed as
* @f[
E (const Tensor<2, dim, Number> &F);
/**
- * Returns the symmetric small strain tensor,
+ * Return the symmetric small strain tensor,
* as constructed from the displacement gradient tensor @p Grad_u.
* The result is expressed as
* @f[
epsilon (const Tensor<2, dim, Number> &Grad_u);
/**
- * Returns the symmetric Almansi strain tensor,
+ * Return the symmetric Almansi strain tensor,
* as constructed from the deformation gradient tensor @p F.
* The result is expressed as
* @f[
//@{
/**
- * Returns the spatial velocity gradient tensor,
+ * Return the spatial velocity gradient tensor,
* as constructed from the deformation gradient tensor @p F
* and its material time derivative @p dF_dt (the material velocity
* gradient).
const Tensor<2, dim, Number> &dF_dt);
/**
- * Returns the rate of deformation tensor (also known as the rate of strain
+ * Return the rate of deformation tensor (also known as the rate of strain
* tensor), as constructed from the deformation gradient tensor @p F
* and its material time derivative @p dF_dt (the material velocity
* gradient).
const Tensor<2, dim, Number> &dF_dt);
/**
- * Returns the rate of rotation tensor (also known as the vorticity
+ * Return the rate of rotation tensor (also known as the vorticity
* tensor), as constructed from the deformation gradient tensor @p F
* and its material time derivative @p dF_dt (the material velocity
* gradient).
static const SymmetricTensor<4, dim> dev_P;
/**
- * Returns the fourth-order referential deviatoric tensor, as constructed from
+ * Return the fourth-order referential deviatoric tensor, as constructed from
* the deformation gradient tensor @p F.
* Also known as the deviatoric operator, this tensor projects a second-order
* symmetric tensor onto a deviatoric space (for which the hydrostatic
Dev_P (const Tensor<2, dim, Number> &F);
/**
- * Returns the transpose of the fourth-order referential deviatoric tensor,
+ * Return the transpose of the fourth-order referential deviatoric tensor,
* as constructed from the deformation gradient tensor @p F.
* The result performs the following operation:
* @f[
*/
//@{
/**
- * Returns the derivative of the volumetric Jacobian
+ * Return the derivative of the volumetric Jacobian
* $J = \text{det} \mathbf{F}$ with respect to the right Cauchy-Green
* tensor, as constructed from the deformation gradient tensor @p F.
* The computed result is
//@{
/**
- * Returns the derivative of the inverse of the right Cauchy-Green
+ * Return the derivative of the inverse of the right Cauchy-Green
* tensor with respect to the right Cauchy-Green tensor itself,
* as constructed from the deformation gradient tensor @p F.
* The result, accounting for symmetry, is defined in index notation as
//@{
/**
- * Returns the rotation matrix for 2-d Euclidean space, namely
+ * Return the rotation matrix for 2-d Euclidean space, namely
* @f[
* \mathbf{R} := \left[ \begin{array}{cc}
* cos(\theta) & sin(\theta) \\
/**
- * Returns the rotation matrix for 3-d Euclidean space. Most concisely
+ * Return the rotation matrix for 3-d Euclidean space. Most concisely
* stated using the Rodrigues' rotation formula, this function returns
* the equivalent of
* @f[
//@{
/**
- * Returns the result of the push forward transformation on a
+ * Return the result of the push forward transformation on a
* contravariant vector, i.e.
* @f[
* \chi\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-2
+ * Return the result of the push forward transformation on a rank-2
* contravariant tensor, i.e.
* @f[
* \chi\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-2
+ * Return the result of the push forward transformation on a rank-2
* contravariant symmetric tensor, i.e.
* @f[
* \chi\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-4
+ * Return the result of the push forward transformation on a rank-4
* contravariant tensor, i.e. (in index notation)
* @f[
* \left[ \chi\left(\bullet\right)^{\sharp} \right]_{ijkl}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-4
+ * Return the result of the push forward transformation on a rank-4
* contravariant symmetric tensor, i.e. (in index notation)
* @f[
* \left[ \chi\left(\bullet\right)^{\sharp} \right]_{ijkl}
//@{
/**
- * Returns the result of the pull back transformation on a contravariant
+ * Return the result of the pull back transformation on a contravariant
* vector, i.e.
* @f[
* \chi^{-1}\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-2
+ * Return the result of the pull back transformation on a rank-2
* contravariant tensor, i.e.
* @f[
* \chi^{-1}\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-2
+ * Return the result of the pull back transformation on a rank-2
* contravariant symmetric tensor, i.e.
* @f[
* \chi^{-1}\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-4
+ * Return the result of the pull back transformation on a rank-4
* contravariant tensor, i.e. (in index notation)
* @f[
* \left[ \chi^{-1}\left(\bullet\right)^{\sharp} \right]_{IJKL}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-4
+ * Return the result of the pull back transformation on a rank-4
* contravariant symmetric tensor, i.e. (in index notation)
* @f[
* \left[ \chi^{-1}\left(\bullet\right)^{\sharp} \right]_{IJKL}
//@{
/**
- * Returns the result of the push forward transformation on a covariant
+ * Return the result of the push forward transformation on a covariant
* vector, i.e.
* @f[
* \chi\left(\bullet\right)^{\flat}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-2
+ * Return the result of the push forward transformation on a rank-2
* covariant tensor, i.e.
* @f[
* \chi\left(\bullet\right)^{\flat}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-2
+ * Return the result of the push forward transformation on a rank-2
* covariant symmetric tensor, i.e.
* @f[
* \chi\left(\bullet\right)^{\flat}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-4
+ * Return the result of the push forward transformation on a rank-4
* covariant tensor, i.e. (in index notation)
* @f[
* \left[ \chi\left(\bullet\right)^{\flat} \right]_{ijkl}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-4
+ * Return the result of the push forward transformation on a rank-4
* covariant symmetric tensor, i.e. (in index notation)
* @f[
* \left[ \chi\left(\bullet\right)^{\flat} \right]_{ijkl}
//@{
/**
- * Returns the result of the pull back transformation on a covariant
+ * Return the result of the pull back transformation on a covariant
* vector, i.e.
* @f[
* \chi^{-1}\left(\bullet\right)^{\flat}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-2
+ * Return the result of the pull back transformation on a rank-2
* covariant tensor, i.e.
* @f[
* \chi^{-1}\left(\bullet\right)^{\flat}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-2
+ * Return the result of the pull back transformation on a rank-2
* covariant symmetric tensor, i.e.
* @f[
* \chi^{-1}\left(\bullet\right)^{\flat}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-4
+ * Return the result of the pull back transformation on a rank-4
* contravariant tensor, i.e. (in index notation)
* @f[
* \left[ \chi^{-1}\left(\bullet\right)^{\flat} \right]_{IJKL}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-4
+ * Return the result of the pull back transformation on a rank-4
* contravariant symmetric tensor, i.e. (in index notation)
* @f[
* \left[ \chi^{-1}\left(\bullet\right)^{\flat} \right]_{IJKL}
//@{
/**
- * Returns the result of the push forward transformation on a
+ * Return the result of the push forward transformation on a
* contravariant vector, i.e.
* @f[
* \textrm{det} \mathbf{F}^{-1} \; \chi\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-2
+ * Return the result of the push forward transformation on a rank-2
* contravariant tensor, i.e.
* @f[
* \textrm{det} \mathbf{F}^{-1} \; \chi\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-2
+ * Return the result of the push forward transformation on a rank-2
* contravariant symmetric tensor, i.e.
* @f[
* \textrm{det} \mathbf{F}^{-1} \; \chi\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-4
+ * Return the result of the push forward transformation on a rank-4
* contravariant tensor, i.e. (in index notation)
* @f[
* \textrm{det} \mathbf{F}^{-1} \; \left[ \chi\left(\bullet\right)^{\sharp} \right]_{ijkl}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the push forward transformation on a rank-4
+ * Return the result of the push forward transformation on a rank-4
* contravariant symmetric tensor, i.e. (in index notation)
* @f[
* \textrm{det} \mathbf{F}^{-1} \; \left[ \chi\left(\bullet\right)^{\sharp} \right]_{ijkl}
//@{
/**
- * Returns the result of the pull back transformation on a contravariant
+ * Return the result of the pull back transformation on a contravariant
* vector, i.e.
* @f[
* \textrm{det} \mathbf{F} \; \chi^{-1}\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-2
+ * Return the result of the pull back transformation on a rank-2
* contravariant tensor, i.e.
* @f[
* \textrm{det} \mathbf{F} \; \chi^{-1}\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-2
+ * Return the result of the pull back transformation on a rank-2
* contravariant symmetric tensor, i.e.
* @f[
* \textrm{det} \mathbf{F} \; \chi^{-1}\left(\bullet\right)^{\sharp}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-4
+ * Return the result of the pull back transformation on a rank-4
* contravariant tensor, i.e. (in index notation)
* @f[
* \textrm{det} \mathbf{F} \; \left[ \chi^{-1}\left(\bullet\right)^{\sharp} \right]_{IJKL}
const Tensor<2,dim,Number> &F);
/**
- * Returns the result of the pull back transformation on a rank-4
+ * Return the result of the pull back transformation on a rank-4
* contravariant symmetric tensor, i.e. (in index notation)
* @f[
* \textrm{det} \mathbf{F} \; \left[ \chi^{-1}\left(\bullet\right)^{\sharp} \right]_{IJKL}
//@{
/**
- * Returns the result of applying Nanson's formula for the transformation
+ * Return the result of applying Nanson's formula for the transformation
* of the material surface area element $d\mathbf{A}$ to the current
* surfaces area element $d\mathbf{a}$ under the nonlinear transformation
* map $\mathbf{x} = \boldsymbol{\varphi} \left( \mathbf{X} \right)$.