* @author Denis Davydov, 2017
*/
template<typename NumberType>
- std::array<NumberType,3> Givens_rotation(const NumberType &x,
+ std::array<NumberType,3> givens_rotation(const NumberType &x,
const NumberType &y);
/**
* @author Denis Davydov, 2017
*/
template <typename OperatorType, typename VectorType>
- double Lanczos_largest_eigenvalue(const OperatorType &H,
+ double lanczos_largest_eigenvalue(const OperatorType &H,
const VectorType &v0,
const unsigned int k,
VectorMemory<VectorType> &vector_memory,
* @author Denis Davydov, 2017
*/
template <typename OperatorType, typename VectorType>
- void Chebyshev_filter(VectorType &x,
+ void chebyshev_filter(VectorType &x,
const OperatorType &H,
const unsigned int n,
const std::pair<double,double> unwanted_spectrum,
template<typename NumberType>
- std::array<std::complex<NumberType>,3> Givens_rotation(const std::complex<NumberType> &f,
+ std::array<std::complex<NumberType>,3> givens_rotation(const std::complex<NumberType> &f,
const std::complex<NumberType> &g)
{
AssertThrow(false, ExcNotImplemented());
template<typename NumberType>
- std::array<NumberType,3> Givens_rotation(const NumberType &f,
+ std::array<NumberType,3> givens_rotation(const NumberType &f,
const NumberType &g)
{
std::array<NumberType,3> res;
template <typename OperatorType, typename VectorType>
- double Lanczos_largest_eigenvalue(const OperatorType &H,
+ double lanczos_largest_eigenvalue(const OperatorType &H,
const VectorType &v0_,
const unsigned int k,
VectorMemory<VectorType> &vector_memory,
template <typename OperatorType, typename VectorType>
- void Chebyshev_filter(VectorType &x,
+ void chebyshev_filter(VectorType &x,
const OperatorType &op,
const unsigned int degree,
const std::pair<double,double> unwanted_spectrum,
// Algorithm 3.2 in Zhou et al, Journal of Computational Physics 274 (2014) 770-782
// with **a bugfix for sigma1**. Here is the original algorithm verbatim:
//
- // [Y]=Chebyshev_filter_scaled(X, m, a, b, aL).
+ // [Y]=chebyshev_filter_scaled(X, m, a, b, aL).
// e=(b−a)/2; c=(a+b)/2; σ=e/(c−aL); τ=2/σ;
// Y=(H∗X−c∗X)∗(σ/e);
// for i=2 to m do