// R_i &=&
// \left(\frac{(\mathbf{w}_{n+1} -
// \mathbf{w}_n)_{\text{component\_i}}}{\delta
- // t},(\mathbf{z}_i)_{\text{component\_i}}\right)_K \\
- // &-& \sum_{d=1}^{\text{dim}} \left( \theta \mathbf{F}
+ // t},(\mathbf{z}_i)_{\text{component\_i}}\right)_K
+ // \\ &-& \sum_{d=1}^{\text{dim}} \left( \theta \mathbf{F}
// ({\mathbf{w^k_{n+1}}})_{\text{component\_i},d} + (1-\theta)
// \mathbf{F} ({\mathbf{w_{n}}})_{\text{component\_i},d} ,
// \frac{\partial(\mathbf{z}_i)_{\text{component\_i}}} {\partial
- // x_d}\right)_K \\
- // &+& \sum_{d=1}^{\text{dim}} h^{\eta} \left( \theta \frac{\partial
+ // x_d}\right)_K
+ // \\ &+& \sum_{d=1}^{\text{dim}} h^{\eta} \left( \theta \frac{\partial
// \mathbf{w^k_{n+1}}_{\text{component\_i}}}{\partial x_d} + (1-\theta)
// \frac{\partial \mathbf{w_n}_{\text{component\_i}}}{\partial x_d} ,
- // \frac{\partial (\mathbf{z}_i)_{\text{component\_i}}}{\partial x_d} \right)_K\\
- // &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component\_i}} +
+ // \frac{\partial (\mathbf{z}_i)_{\text{component\_i}}}{\partial x_d} \right)_K
+ // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component\_i}} +
// (1-\theta)\mathbf{G}({\mathbf{w}_n} )_{\text{component\_i}} ,
// (\mathbf{z}_i)_{\text{component\_i}} \right)_K ,
// @f}