domain. It then looks like this: Find $y = \{\mathbf v, p,
\mathbf u\} \in Y \subset H^1(\Omega_f)^d \times L_2(\Omega_f) \times
H^1(\Omega_s)^d$ such that
-@f{multline*}
+@f{align*}
2 \eta (\varepsilon(\mathbf a), \varepsilon(\mathbf v))_{\Omega_f}
- (\nabla \cdot \mathbf a, p)_{\Omega_f}
- - (q, \nabla \cdot \mathbf v)_{\Omega_f}
+ - (q, \nabla \cdot \mathbf v)_{\Omega_f} &
\\
- + (\varepsilon(\mathbf b), C \varepsilon(\mathbf u))_{\Omega_s}
+ + (\varepsilon(\mathbf b), C \varepsilon(\mathbf u))_{\Omega_s} &
\\
- (\mathbf b,
(2 \eta \varepsilon(\mathbf v) + p \mathbf 1) \mathbf n)_{\Gamma_i}
- =
+ &=
0,
@f}
-for all test functions $\mathbf a, q, \mathbf b$.
+for all test functions $\mathbf a, q, \mathbf b$; the first, second, and
+third lines correspond to the fluid, solid, and interface
+contributions, respectively.
Note that $Y$ is only a subspace of the spaces listed above to accommodate for
the various Dirichlet boundary conditions.
Let us first discuss implementing the bilinear form, which at the
discrete level we recall to be
-@f{multline*}
+@f{align*}
2 \eta (\varepsilon(\mathbf a_h), \varepsilon(\mathbf v_h))_{\Omega_f}
- (\nabla \cdot \mathbf a_h, p_h)_{\Omega_f}
- - (q_h, \nabla \cdot \mathbf v_h)_{\Omega_f}
+ - (q_h, \nabla \cdot \mathbf v_h)_{\Omega_f} &
\\
- + (\varepsilon(\mathbf b_h), C \varepsilon(\mathbf u_h))_{\Omega_s}
+ + (\varepsilon(\mathbf b_h), C \varepsilon(\mathbf u_h))_{\Omega_s} &
\\
- (\mathbf b_h,
(2 \eta \varepsilon(\mathbf v_h) + p \mathbf 1) \mathbf n)_{\Gamma_i}
- =
+ &=
0,
@f}
Given that we have extended the fields by zero, we could in principle