If one does this, one finds the following pattern for the $L_2$ error
in the pressure variable:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td></td>
<td colspan="3" align="center">Finite element order</td>
One can make the same experiment with the $L_2$ error
in the velocity variables:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td></td>
<td colspan="3" align="center">Finite element order</td>
The graphical output of the program looks as follows:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-29.v.png" alt="v = Re(u)">
effects some more, here is another set of images highlighting how well
the intensity is actually focused in $x$-direction:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-29.surface.png" alt="|u|">
500, 1000, 1500, 2000, 3000, 4000, and 5000 looks like this (note that
the color scale used for the temperature is not always the same):
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-31.2d.solution.00.png" alt="">
In addition to the pictures above, the following ones show the
adaptive mesh and the flow field at the same time steps:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-31.2d.grid.00.png" alt="">
50, 100, 150, 200, 300, 400, 500, 600, 700, and 800 yields the
following plots:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-31.3d.solution.00.png" alt="">
$\beta=0.01, \beta=0.1$, and $\beta=0.5$, different choices of $c_k$, and
bilinear elements (<code>temperature_degree=1</code>) in 2d:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-31.timestep.q1.beta=0.01.png" alt="">
(<code>temperature_degree=2</code>) for the temperature, while we
retain the $Q_2/Q_1$ stable Taylor-Hood element for the Stokes system:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-31.timestep.q2.beta=0.01.png" alt="">
and 8,250,000 degrees of freedom, respectively, more than an order of
magnitude more than we had available in step-31:
-<table align="center" border="1" cellspacing="3" cellpadding="3">
+<table align="center" class="doxtable">
<tr>
<td>
<img src="https://www.dealii.org/images/steps/developer/step-32.3d.cube.0.png" alt="">
instruction, which is heavily used in FEEvaluation), optimized mode, and two
MPI ranks.
-<table align="center" border="1">
+<table align="center" class="doxtable">
<tr>
<th> </th>
<th colspan="2">Sparse matrix</th>
both second and fourth order elements. The results are summarized in the
following table.
-<table align="center" border="1">
+<table align="center" class="doxtable">
<tr>
<th> </th>
<th colspan="3">wave equation</th>
the computing time of the tutorial program and the share of the individual
components:
-<table align="center" border="1">
+<table align="center" class="doxtable">
<tr>
<th> </th>
<th> </th>
the efficiency of the different degrees, which is computed by dividing the
number of degrees of freedom by the solver time.
-<table align="center" border="1">
+<table align="center" class="doxtable">
<tr>
<th>degree</th>
<td>1</td>
operations done by FEFaceEvaluation::gather_evaluate() and
FEFaceEvaluation::integrate_scatter().
-<table align="center" border="1">
+<table align="center" class="doxtable">
<tr>
<th>degree</th>
<td>1</td>