]> https://gitweb.dealii.org/ - dealii.git/commitdiff
improve tutorial layouts 8155/head
authorTimo Heister <timo.heister@gmail.com>
Tue, 14 May 2019 05:10:29 +0000 (23:10 -0600)
committerTimo Heister <timo.heister@gmail.com>
Tue, 14 May 2019 05:10:29 +0000 (23:10 -0600)
- remove a TODO
- replace aspect URL and use ASPECT not Aspect
- fix some formulas
- use table headers

12 files changed:
examples/step-16/step-16.cc
examples/step-20/doc/results.dox
examples/step-3/doc/results.dox
examples/step-31/doc/intro.dox
examples/step-31/doc/results.dox
examples/step-32/doc/intro.dox
examples/step-32/doc/results.dox
examples/step-45/doc/intro.dox
examples/step-53/doc/intro.dox
examples/step-56/doc/intro.dox
examples/step-56/step-56.cc
examples/step-59/doc/results.dox

index 5b1652f35c9b4db80fccf41d25b770ca0dc2bdb3..55d2074d89ef57f2b654bbc3f0b9ad209a6780c9 100644 (file)
@@ -461,8 +461,9 @@ namespace Step16
 
       const unsigned int dofs_per_cell = cd.local_dof_indices.size();
 
-      // TODO EXPLAIN:
-
+      // Interface entries are ignored by the boundary_constraints object
+      // above when filling the mg_matrices[cd.level]. Instead, we copy these
+      // entries into the interface matrix of the current level manually:
       for (unsigned int i = 0; i < dofs_per_cell; ++i)
         for (unsigned int j = 0; j < dofs_per_cell; ++j)
           if (mg_constrained_dofs.is_interface_matrix_entry(
index abd88fce739147e1a3b3fe0efe436147c390f861..12adc83b7e620886f891aa4abe32dc18b53a795c 100644 (file)
@@ -77,38 +77,38 @@ If one does this, one finds the following pattern for the $L_2$ error
 in the pressure variable:
 <table align="center" class="doxtable">
   <tr>
-    <td></td>
-    <td colspan="3" align="center">Finite element order</td>
+    <th></th>
+    <th colspan="3" align="center">Finite element order</th>
   </tr>
   <tr>
-    <td>Refinement level</td>
-    <td>0</td>
-    <td>1</td>
-    <td>2</td>
+    <th>Refinement level</th>
+    <th>0</th>
+    <th>1</th>
+    <th>2</th>
   </tr>
   <tr>
-    <td>0</td>  <td>1.45344</td>  <td>0.0831743</td>  <td>0.0235186</td>
+    <th>0</th>  <td>1.45344</td>  <td>0.0831743</td>  <td>0.0235186</td>
   </tr>
   <tr>
-    <td>1</td>  <td>0.715099</td>  <td>0.0245341</td>  <td>0.00293983</td>
+    <th>1</th>  <td>0.715099</td>  <td>0.0245341</td>  <td>0.00293983</td>
   </tr>
   <tr>
-    <td>2</td>  <td>0.356383</td>  <td>0.0063458</td>  <td>0.000367478</td>
+    <th>2</th>  <td>0.356383</td>  <td>0.0063458</td>  <td>0.000367478</td>
   </tr>
   <tr>
-    <td>3</td>  <td>0.178055</td>  <td>0.00159944</td>  <td>4.59349e-05</td>
+    <th>3</th>  <td>0.178055</td>  <td>0.00159944</td>  <td>4.59349e-05</td>
   </tr>
   <tr>
-    <td>4</td>  <td>0.0890105</td>  <td>0.000400669</td>  <td>5.74184e-06</td>
+    <th>4</th>  <td>0.0890105</td>  <td>0.000400669</td>  <td>5.74184e-06</td>
   </tr>
   <tr>
-    <td>5</td>  <td>0.0445032</td>  <td>0.000100218</td>  <td>7.17799e-07</td>
+    <th>5</th>  <td>0.0445032</td>  <td>0.000100218</td>  <td>7.17799e-07</td>
   </tr>
   <tr>
-    <td>6</td>  <td>0.0222513</td>  <td>2.50576e-05</td>  <td>9.0164e-08</td>
+    <th>6</th>  <td>0.0222513</td>  <td>2.50576e-05</td>  <td>9.0164e-08</td>
   </tr>
   <tr>
-    <td></td>  <td>$O(h)$</td>  <td>$O(h^2)$</td>  <td>$O(h^3)$</td>
+    <th></th>  <th>$O(h)$</th>  <th>$O(h^2)$</th>  <th>$O(h^3)$</th>
   </tr>
 </table>
 
@@ -121,38 +121,38 @@ One can make the same experiment with the $L_2$ error
 in the velocity variables:
 <table align="center" class="doxtable">
   <tr>
-    <td></td>
-    <td colspan="3" align="center">Finite element order</td>
+    <th></th>
+    <th colspan="3" align="center">Finite element order</th>
   </tr>
   <tr>
-    <td>Refinement level</td>
-    <td>0</td>
-    <td>1</td>
-    <td>2</td>
+    <th>Refinement level</th>
+    <th>0</th>
+    <th>1</th>
+    <th>2</th>
   </tr>
   <tr>
-    <td>0</td> <td>0.367423</td> <td>0.127657</td> <td>5.10388e-14</td>
+    <th>0</th> <td>0.367423</td> <td>0.127657</td> <td>5.10388e-14</td>
   </tr>
   <tr>
-    <td>1</td> <td>0.175891</td> <td>0.0319142</td> <td>9.04414e-15</td>
+    <th>1</th> <td>0.175891</td> <td>0.0319142</td> <td>9.04414e-15</td>
   </tr>
   <tr>
-    <td>2</td> <td>0.0869402</td> <td>0.00797856</td> <td>1.23723e-14</td>
+    <th>2</th> <td>0.0869402</td> <td>0.00797856</td> <td>1.23723e-14</td>
   </tr>
   <tr>
-    <td>3</td> <td>0.0433435</td> <td>0.00199464</td> <td>1.86345e-07</td>
+    <th>3</th> <td>0.0433435</td> <td>0.00199464</td> <td>1.86345e-07</td>
   </tr>
   <tr>
-    <td>4</td> <td>0.0216559</td> <td>0.00049866</td> <td>2.72566e-07</td>
+    <th>4</th> <td>0.0216559</td> <td>0.00049866</td> <td>2.72566e-07</td>
   </tr>
   <tr>
-    <td>5</td> <td>0.010826</td> <td>0.000124664</td> <td>3.57141e-07</td>
+    <th>5</th> <td>0.010826</td> <td>0.000124664</td> <td>3.57141e-07</td>
   </tr>
   <tr>
-    <td>6</td> <td>0.00541274</td> <td>3.1166e-05</td> <td>4.46124e-07</td>
+    <th>6</th> <td>0.00541274</td> <td>3.1166e-05</td> <td>4.46124e-07</td>
   </tr>
   <tr>
-    <td></td>  <td>$O(h)$</td>  <td>$O(h^2)$</td>  <td>$O(h^3)$</td>
+    <th></th>  <td>$O(h)$</td>  <td>$O(h^2)$</td>  <td>$O(h^3)$</td>
   </tr>
 </table>
 The result concerning the convergence order is the same here.
index cbf2242d3f84a3c8350747c26785395b3f736a9d..a295a9d4a4c27dd5a36696fe356a7aefc9613fd7 100644 (file)
@@ -159,8 +159,8 @@ suggestions:
   @endcode
   For 1 through 9 global refinement steps, we then get the following sequence
   of point values:
-  <table align="center">
-    <tr> <td># of refinements</td> <td>$u_h(\frac 13,\frac13)$</td> </tr>
+  <table align="center" class="doxtable">
+    <tr> <th># of refinements</th> <th>$u_h(\frac 13,\frac13)$</th> </tr>
     <tr> <td>1</td> <td>0.166667</td> </tr>
     <tr> <td>2</td> <td>0.227381</td> </tr>
     <tr> <td>3</td> <td>0.237375</td> </tr>
@@ -200,8 +200,8 @@ suggestions:
   parameters mean, while the first and third should be obvious. Doing the same
   study again where we change the number of global refinement steps, we get
   the following result:
-  <table align="center">
-    <tr> <td># of refinements</td> <td>$\int_\Omega u_h(x)\; dx$</td> </tr>
+  <table align="center" class="doxtable">
+    <tr> <th># of refinements</th> <th>$\int_\Omega u_h(x)\; dx$</th> </tr>
     <tr> <td>0</td> <td>0.09375000</td> </tr>
     <tr> <td>1</td> <td>0.12790179</td> </tr>
     <tr> <td>2</td> <td>0.13733440</td> </tr>
index 861108fbae8a07d72e0f469875ea1bef5427a33c..43482a307ecbd3f23eb86d086a208372c893025e 100644 (file)
@@ -120,7 +120,7 @@ earth's interior and surface structure.
 @note If you are interested in using the program as the basis for your own
 experiments, you will also want to take a look at its continuation in
 step-32. Furthermore, step-32 later was developed into the much larger open
-source code Aspect (see http://aspect.dealii.org/ ) that can solve realistic
+source code ASPECT (see https://aspect.geodynamics.org/ ) that can solve realistic
 problems and that you may want to investigate before trying to morph step-31
 into something that can solve whatever you want to solve.
 
@@ -246,8 +246,8 @@ means that the time step size $k$ may change from time step to time
 step, and that we have to modify the above formula slightly. If
 $k_n,k_{n-1}$ are the time steps sizes of the current and previous time
 step, then we use the approximations
-
-$\frac{\partial T}{\partial t} \approx
+@f{align*}{
+\frac{\partial T}{\partial t} \approx
  \frac 1{k_n}
  \left(
        \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} T^{n}
@@ -255,15 +255,18 @@ $\frac{\partial T}{\partial t} \approx
        \frac{k_n+k_{n-1}}{k_{n-1}}T^{n-1}
        +
        \frac{k_n^2}{k_{n-1}(k_n+k_{n-1})} T^{n-2}
- \right)$
+ \right)
+ @f}
 and
-$T^n \approx
+@f{align*}{
+T^n \approx
    T^{n-1} + k_n \frac{\partial T}{\partial t}
    \approx
    T^{n-1} + k_n
    \frac{T^{n-1}-T^{n-2}}{k_{n-1}}
    =
-   \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2}$,
+   \left(1+\frac{k_n}{k_{n-1}}\right)T^{n-1}-\frac{k_n}{k_{n-1}}T^{n-2},
+@f}
 and above equation is generalized as follows:
 @f{eqnarray*}
   \frac{2k_n+k_{n-1}}{k_n+k_{n-1}} T^n
index 9bedcf55297cfa8b4a60b725966b2d6aa1d05b7f..6f16187468398c1012f127f240bcb51fe0d04cbd 100644 (file)
@@ -592,7 +592,7 @@ is, of course, to make it faster and/or increase the resolution of the
 program, in particular in 3d. This is the topic of the step-32
 tutorial program which will implement strategies to solve this problem in
 %parallel on a cluster. It is also the basis of the much larger open
-source code Aspect (see http://aspect.dealii.org/ ) that can solve realistic
+source code ASPECT (see https://aspect.geodynamics.org/ ) that can solve realistic
 problems and that constitutes the further development of step-32.
 
 Another direction would be to make the fluid flow more realistic. The program
index d03c8a27b978d2553226f5121ebd673dca7c35f9..8071c67c0c0e88c75d7b51a3c8a39e495caf11a8 100644 (file)
@@ -22,7 +22,7 @@ The work discussed here is also presented in the following publication:
 </b>
 
 The continuation of development of this program has led to the much larger open
-source code <i>Aspect</i> (see http://aspect.geodynamics.org/) which is much
+source code <i>ASPECT</i> (see http://aspect.geodynamics.org/) which is much
 more flexible in solving many kinds of related problems.
 </i>
 
@@ -851,7 +851,7 @@ convection in the earth mantle: for that, more and more difficult
 physics would have to be implemented, and several other aspects are
 currently missing from this program as well. We will come back to this
 issue in the results section again, but state for now that providing a
-realistic description is a goal of the <i>Aspect</i> code in
+realistic description is a goal of the <i>ASPECT</i> code in
 development at the time of writing this.
 
 As a reminder, let us again state the equations we want to solve are these:
@@ -1304,9 +1304,9 @@ and self contained.
 That said, both step-31 and the current step-32 have not come about by chance
 but are certainly meant as wayposts along the path to a more comprehensive
 program that will simulate convection in the earth mantle. We call this code
-<i>Aspect</i> (short for <i>Advanced %Solver for Problems in Earth's
+<i>ASPECT</i> (short for <i>Advanced %Solver for Problems in Earth's
 ConvecTion</i>); its development is funded by
 the <a href="http://www.geodynamics.org">Computational Infrastructure in
 Geodynamics</a> initiative with support from the National Science
-Foundation. More information on <i>Aspect</i> is available at
+Foundation. More information on <i>ASPECT</i> is available at
 its <a href="https://aspect.geodynamics.org/">homepage</a>.
index 39568baae410a6dc6093fc841c7062f74e46cec9..93b1b06ceea6298244b2cd7948bbac6476d899bc 100644 (file)
@@ -269,7 +269,7 @@ seen above, interesting behavior only starts after quite a long time
 requiring more CPU hours than is available on a typical
 cluster. Consequently, rather than showing a complete simulation here,
 let us simply show a couple of pictures we have obtained using the
-successor to this program, called <i>Aspect</i> (short for <i>Advanced
+successor to this program, called <i>ASPECT</i> (short for <i>Advanced
 %Solver for Problems in Earth's ConvecTion</i>), that is being
 developed independently of deal.II and that already incorporates some
 of the extensions discussed below. The following two pictures show
@@ -288,7 +288,7 @@ with the mesh) onto 512 processors:
 
 There are many directions in which this program could be extended. As
 mentioned at the end of the introduction, most of these are under active
-development in the <i>Aspect</i> (short for <i>Advanced %Solver for Problems
+development in the <i>ASPECT</i> (short for <i>Advanced %Solver for Problems
 in Earth's ConvecTion</i>) code at the time this tutorial program is being
 finished. Specifically, the following are certainly topics that one should
 address to make the program more useful:
@@ -415,6 +415,6 @@ able to.
 
 There are many other ways to extend the current program. However, rather than
 discussing them here, let us point to the much larger open
-source code Aspect (see http://aspect.dealii.org/ ) that constitutes the
+source code ASPECT (see https://aspect.geodynamics.org/ ) that constitutes the
 further development of step-32 and that already includes many such possible
 extensions.
index 8779947dc78ac845caee9905401d98fe789e1b74..11c65727976812cb5dfa987ab17b9657f81d702f 100644 (file)
@@ -153,7 +153,7 @@ velocity component of a Stokes flow.
 On a quarter-circle defined by $\Omega=\{{\bf x}\in(0,1)^2:\|{\bf x}\|\in (0.5,1)\}$ we are
 going to solve the Stokes problem
 @f{eqnarray*}
-  -\Delta \; \textbf{u} + \nabla p &=& (\exp(-100*\|{\bf x}-(.75,0.1)^T\|^2),0)^T, \\
+  -\Delta \; \textbf{u} + \nabla p &=& (\exp(-100\|{\bf x}-(.75,0.1)^T\|^2),0)^T, \\
   -\textrm{div}\;  \textbf{u}&=&0,\\
   \textbf{u}|_{\Gamma_1}&=&{\bf 0},
 @f}
index f5c51da6665e44150e5b7fa0e35cd11fb34a3893..cb06647009738cd8215cbbf45aa06acb40000ddb 100644 (file)
@@ -112,7 +112,7 @@ we will do in this program.
 
 To illustrate how one describes geometries using charts in deal.II, we will
 consider a case that originates in an application of the <a
-href="http://aspect.dealii.org">ASPECT mantle convection code</a>, using a
+href="https://aspect.geodynamics.org">ASPECT mantle convection code</a>, using a
 data set provided by D. Sarah Stamps. In the concrete application, we were
 interested in describing flow in the Earth mantle under the <a
 href="http://en.wikipedia.org/wiki/East_African_rift">East African Rift</a>, a
index 654c08eb75ee3954fc3f72071cc8cf6825f3e571..fcf4269a28fa730151a9482709b3b0c8a4d188a9 100644 (file)
@@ -189,7 +189,7 @@ solvers instead of the Schur Complement approach used in
 step-22. Details of this approach can be found under the "Block Schur
 complement preconditioner" subsection of the "Possible Extensions"
 section of step-22. For the preconditioner of the velocity block, we
-borrow a class from <a href="http://aspect.dealii.org">ASPECT</a>
+borrow a class from <a href="https://aspect.geodynamics.org">ASPECT</a>
 called @p BlockSchurPreconditioner that has the option to solve for
 the inverse of $A$ or just apply one preconditioner sweep for it
 instead, which provides us with an expensive and cheap approach,
index 86660dd2d457e480ea1e8cbf94d7572847477e7f..042b152e472db6e5e6d818fd9811be739a250a79 100644 (file)
@@ -296,7 +296,7 @@ namespace Step56
   // of a single preconditioner application.
   // 3. do not use InverseMatrix but explicitly call SolverCG.
   // This approach is also used in the ASPECT code
-  // (see http://aspect.dealii.org) that solves the Stokes equations in
+  // (see https://aspect.geodynamics.org) that solves the Stokes equations in
   // the context of simulating convection in the earth mantle, and which
   // has been used to solve problems on many thousands of processors.
   //
index 541e84055c492eb32b47082312dbdb11dad674dc..2c3ebd4a07326b386c8c3b5e31dd4d261a8a7f34 100644 (file)
@@ -129,18 +129,18 @@ number of degrees of freedom by the solver time.
 <table align="center" class="doxtable">
   <tr>
    <th>degree</th>
-   <td>1</td>
-   <td>2</td>
-   <td>3</td>
-   <td>4</td>
-   <td>5</td>
-   <td>6</td>
-   <td>7</td>
-   <td>8</td>
-   <td>9</td>
-   <td>10</td>
-   <td>11</td>
-   <td>12</td>
+   <th>1</th>
+   <th>2</th>
+   <th>3</th>
+   <th>4</th>
+   <th>5</th>
+   <th>6</th>
+   <th>7</th>
+   <th>8</th>
+   <th>9</th>
+   <th>10</th>
+   <th>11</th>
+   <th>12</th>
   </tr>
   <tr>
    <th>Number of DoFs</th>
@@ -240,18 +240,18 @@ FEFaceEvaluation::integrate_scatter().
 <table align="center" class="doxtable">
   <tr>
    <th>degree</th>
-   <td>1</td>
-   <td>2</td>
-   <td>3</td>
-   <td>4</td>
-   <td>5</td>
-   <td>6</td>
-   <td>7</td>
-   <td>8</td>
-   <td>9</td>
-   <td>10</td>
-   <td>11</td>
-   <td>12</td>
+   <th>1</th>
+   <th>2</th>
+   <th>3</th>
+   <th>4</th>
+   <th>5</th>
+   <th>6</th>
+   <th>7</th>
+   <th>8</th>
+   <th>9</th>
+   <th>10</th>
+   <th>11</th>
+   <th>12</th>
   </tr>
   <tr>
    <th>Number of DoFs</th>

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.