2. If $\varepsilon=0$ then this is the stationary advection equation solved in
step-9.
-3. Define the \textit{Peclet number}: $\mathcal{P}\coloneqq
+3. Define the <i>Peclet number</i>: $\mathcal{P}\coloneqq
\|\boldsymbol{\beta}\| \cdot L/\varepsilon$. If $\mathcal{P}>1$, we say the
problem is <i>advection-dominated</i>, else if $\mathcal{P}<1$ we will
say the problem is <i>diffusion-dominated</i>. Here $L$ is the length
L$. To combat this, we will consider the new weak form
@f{align*}{
a(u_h,\,v_h) + \sum_K (-\varepsilon \Delta u_h +
-\boldsymbol{\beta}\cdot \nabla u_h-f,\,\delta
-\boldsymbol{\beta}_K\cdot \nabla v_h)_K = F(v_h)
+\boldsymbol{\beta}\cdot \nabla u_h-f,\,\delta_K
+\boldsymbol{\beta}\cdot \nabla v_h)_K = F(v_h)
@f}
-where the sum is done over all cells $K$ with the inner product is
-understood on that cell, and $\delta_K$ is a cell-wise constant
+where the sum is done over all cells $K$ with the inner product taken
+for each cell, and $\delta_K$ is a cell-wise constant
stabilization parameter defined in <a
href="https://link.springer.com/chapter/10.1007/978-3-540-34288-5_27">
On Discontinuity-Capturing Methods for Convection-Diffusion Equations
// @sect3{Right-hand Side and Boundary Values}
- // The problem solved in this tutorial is an adaptation of Ex. 3.1.3
- // found on pg. 118 of
- // <a
+ // The problem solved in this tutorial is an adaptation of Ex. 3.1.3 found
+ // on pg. 118 of <a
// href="https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808">
// Finite Elements and Fast Iterative Solvers: with Applications in
- // Incompressible Fluid Dynamics by Elman, Silvester, and Wathen</a> with
- // Applications in Incompressible Fluid Dynamics by Elman, Silvester, and
- // Wathen. The main difference being that we add a hole in the center of our
- // domain with zero Dirichlet boundary.
+ // Incompressible Fluid Dynamics by Elman, Silvester, and Wathen</a>. The
+ // main difference being that we add a hole in the center of our domain with
+ // zero Dirichlet boundary.
- // We have a zero right-hand side.
+ // We have a zero right-hand side:
template <int dim>
class RightHandSide : public Function<dim>
{
// @sect3{Streamline Diffusion}
- // Streamline diffusion stabilization term. Value is defined in
- // <a href="https://link.springer.com/chapter/10.1007/978-3-540-34288-5_27">
- // On Discontinuity—Capturing Methods for Convection—Diffusion Equations
- // by Volker and Petr</a>
+ // Streamline diffusion stabilization constant. Parameter design is taken
+ // from <a
+ // href="https://link.springer.com/chapter/10.1007/978-3-540-34288-5_27"> On
+ // Discontinuity-Capturing Methods for Convection-Diffusion Equations by
+ // Volker John and Petr Knobloch</a>
template <int dim>
double compute_stabilization_delta(const double hk,
const double eps,