]> https://gitweb.dealii.org/ - dealii.git/commitdiff
Explains formulation of the saturation equation 8470/head
authorOmotayo Omosebi <dr.omosebi@gmail.com>
Mon, 19 Aug 2019 18:06:10 +0000 (14:06 -0400)
committerOmotayo Omosebi <dr.omosebi@gmail.com>
Mon, 19 Aug 2019 18:06:10 +0000 (14:06 -0400)
doc/news/changes/minor/20190807Omosebi [new file with mode: 0644]
examples/step-21/doc/intro.dox

diff --git a/doc/news/changes/minor/20190807Omosebi b/doc/news/changes/minor/20190807Omosebi
new file mode 100644 (file)
index 0000000..bd9cca8
--- /dev/null
@@ -0,0 +1,4 @@
+Changed: The saturation equation in step-21 is explained further for 
+consistency with literatures in porous media transport.
+<br>
+(Omotayo Omosebi, 2019/08/07)
index 543c69f6a7753de6ff2e887f90311b38a7bcd479..4fa98411d99dfa43e5cd153f374c71e7df8cbb07 100644 (file)
@@ -79,13 +79,13 @@ of course is going to change as the fluids move around.
 The second part of the equations is the description of the
 dynamics of the saturation. The saturation equation for the displacing fluid (water) is:
 @f{eqnarray*}
-  S_{t} + \nabla \cdot (F(S) \mathbf{u}) = \{q}_{w},
+  S_{t} + \nabla \cdot (F(S) \mathbf{u}) = q_{w},
   \\
-  S_{t} + F(S) \nabla \mathbf{u} + \mathbf{u} \cdot \nabla F(S) = S_{t} + F(S) * \q + \mathbf{u} \cdot \nabla F(S) = \{q}_{w}.
+  S_{t} + F(S) \nabla \mathbf{u} + \mathbf{u} \cdot \nabla F(S) = S_{t} + F(S) * q + \mathbf{u} \cdot \nabla F(S) = q_{w}.
 @f}
-where $\{q}_{w}$ is the flow rate of the displacing fluid (water) and is related to the fractional flow F(S) through:
+where $q_{w}$ is the flow rate of the displacing fluid (water) and is related to the fractional flow F(S) through:
 @f[
-  \{q}_{w} = F(S) * \q,
+  q_{w} = F(S) * q,
   \\
   F(S)
   =

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

Douglas Adams


Typeset in Trocchi and Trocchi Bold Sans Serif.