* @dealiiHolzapfelA{71,2.39}
*/
template <int dim, typename Number>
- Tensor<2, dim, Number>
- F(const Tensor<2, dim, Number> &Grad_u);
+ DEAL_II_ALWAYS_INLINE Tensor<2, dim, Number>
+ F(const Tensor<2, dim, Number> &Grad_u);
/**
* Return the isochoric counterpart of the deformation gradient
* @dealiiHolzapfelA{228,6.79}
*/
template <int dim, typename Number>
- Tensor<2, dim, Number>
- F_iso(const Tensor<2, dim, Number> &F);
+ DEAL_II_ALWAYS_INLINE Tensor<2, dim, Number>
+ F_iso(const Tensor<2, dim, Number> &F);
/**
* Return the volumetric counterpart of the deformation gradient
* @dealiiHolzapfelA{228,6.79}
*/
template <int dim, typename Number>
- SymmetricTensor<2, dim, Number>
- F_vol(const Tensor<2, dim, Number> &F);
+ DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
+ F_vol(const Tensor<2, dim, Number> &F);
/**
* Return the symmetric right Cauchy-Green deformation tensor,
* @dealiiHolzapfelA{78,2.65}
*/
template <int dim, typename Number>
- SymmetricTensor<2, dim, Number>
- C(const Tensor<2, dim, Number> &F);
+ DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
+ C(const Tensor<2, dim, Number> &F);
/**
* Return the symmetric left Cauchy-Green deformation tensor,
* @dealiiHolzapfelA{81,2.79}
*/
template <int dim, typename Number>
- SymmetricTensor<2, dim, Number>
- b(const Tensor<2, dim, Number> &F);
+ DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
+ b(const Tensor<2, dim, Number> &F);
//@}
* @dealiiHolzapfelA{79,6.29}
*/
template <int dim, typename Number>
- SymmetricTensor<2, dim, Number>
- E(const Tensor<2, dim, Number> &F);
+ DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
+ E(const Tensor<2, dim, Number> &F);
/**
* Return the symmetric small strain tensor,
* @dealiiWriggersA{24,3.17}
*/
template <int dim, typename Number>
- SymmetricTensor<2, dim, Number>
- epsilon(const Tensor<2, dim, Number> &Grad_u);
+ DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
+ epsilon(const Tensor<2, dim, Number> &Grad_u);
/**
* Return the symmetric Almansi strain tensor,
* @dealiiHolzapfelA{81,2.83}
*/
template <int dim, typename Number>
- SymmetricTensor<2, dim, Number>
- e(const Tensor<2, dim, Number> &F);
+ DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
+ e(const Tensor<2, dim, Number> &F);
//@}
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE Tensor<2, dim, Number>
- Physics::Elasticity::Kinematics::F(const Tensor<2, dim, Number> &Grad_u)
+inline Tensor<2, dim, Number>
+Physics::Elasticity::Kinematics::F(const Tensor<2, dim, Number> &Grad_u)
{
return StandardTensors<dim>::I + Grad_u;
}
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE Tensor<2, dim, Number>
- Physics::Elasticity::Kinematics::F_iso(const Tensor<2, dim, Number> &F)
+inline Tensor<2, dim, Number>
+Physics::Elasticity::Kinematics::F_iso(const Tensor<2, dim, Number> &F)
{
return std::pow(determinant(F), -1.0 / dim) * F;
}
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
- Physics::Elasticity::Kinematics::F_vol(const Tensor<2, dim, Number> &F)
+inline SymmetricTensor<2, dim, Number>
+Physics::Elasticity::Kinematics::F_vol(const Tensor<2, dim, Number> &F)
{
return internal::NumberType<Number>::value(
std::pow(determinant(F), 1.0 / dim)) *
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
- Physics::Elasticity::Kinematics::C(const Tensor<2, dim, Number> &F)
+inline SymmetricTensor<2, dim, Number>
+Physics::Elasticity::Kinematics::C(const Tensor<2, dim, Number> &F)
{
return symmetrize(transpose(F) * F);
}
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
- Physics::Elasticity::Kinematics::b(const Tensor<2, dim, Number> &F)
+inline SymmetricTensor<2, dim, Number>
+Physics::Elasticity::Kinematics::b(const Tensor<2, dim, Number> &F)
{
return symmetrize(F * transpose(F));
}
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
- Physics::Elasticity::Kinematics::E(const Tensor<2, dim, Number> &F)
+inline SymmetricTensor<2, dim, Number>
+Physics::Elasticity::Kinematics::E(const Tensor<2, dim, Number> &F)
{
return internal::NumberType<Number>::value(0.5) *
(C(F) - static_cast<SymmetricTensor<2, dim, Number>>(
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
- Physics::Elasticity::Kinematics::epsilon(const Tensor<2, dim, Number> &Grad_u)
+inline SymmetricTensor<2, dim, Number>
+Physics::Elasticity::Kinematics::epsilon(const Tensor<2, dim, Number> &Grad_u)
{
// This is the equivalent to 0.5*symmetrize(Grad_u + transpose(Grad_u));
return symmetrize(Grad_u);
template <int dim, typename Number>
-inline DEAL_II_ALWAYS_INLINE SymmetricTensor<2, dim, Number>
- Physics::Elasticity::Kinematics::e(const Tensor<2, dim, Number> &F)
+inline SymmetricTensor<2, dim, Number>
+Physics::Elasticity::Kinematics::e(const Tensor<2, dim, Number> &F)
{
const Tensor<2, dim, Number> F_inv = invert(F);
return internal::NumberType<Number>::value(0.5) *