\varepsilon^p:(\tau - \sigma) &\geq 0\quad\forall\tau\text{ with
}\mathcal{F}(\tau)\leq 0 & &\quad\text{in } \Omega,\\
\mathbf u &= 0 & &\quad\text{on }\Gamma_D,\\
- \sigma \cdot \mathbf n - [\mathbf n \cdot(\sigma \cdot \mathbf n)]\mathbf n &= 0,
- \quad \mathbf n \cdot (\sigma \cdot
+ \sigma \mathbf n - [\mathbf n \cdot(\sigma \mathbf n)]\mathbf n &= 0,
+ \quad \mathbf n \cdot (\sigma
\mathbf n) \leq 0 & &\quad\text{on }\Gamma_C,\\
- (\mathbf n \cdot (\sigma \cdot
+ (\mathbf n \cdot (\sigma
\mathbf n))(\mathbf n \cdot \mathbf u - g) &= 0,\quad \mathbf n
\cdot \mathbf u - g \leq 0 & &\quad\text{on } \Gamma_C.
@f}
Further equations describe a
fixed, zero displacement on $\Gamma_D$ and
that on the surface $\Gamma_C=\partial\Omega\backslash\Gamma_D$ where contact may appear, the normal
-force $\sigma_n=\mathbf n \cdot (\sigma(\mathbf u) \cdot
+force $\sigma_n=\mathbf n \cdot (\sigma(\mathbf u)
\mathbf n)$ exerted by the obstacle is inward (no "pull" by the obstacle on our
-body) and with zero tangential component $\mathbf \sigma_t= \sigma \cdot \mathbf n - \mathbf \sigma_n \mathbf n
-= \sigma \cdot \mathbf n - [\mathbf n \cdot(\sigma \cdot \mathbf n)]\mathbf n$.
+body) and with zero tangential component $\mathbf \sigma_t= \sigma \mathbf n - \mathbf \sigma_n \mathbf n
+= \sigma \mathbf n - [\mathbf n \cdot(\sigma \mathbf n)]\mathbf n$.
The last condition is again a complementarity condition that
implies that on $\Gamma_C$, the normal
force can only be nonzero if the body is in contact with the obstacle; the