From: deal Date: Wed, 1 Oct 2003 20:24:31 +0000 (+0000) Subject: We now integrate twice over faces in 3d. Adjust tolerances. X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=08f040f5ebeda76b378c8ff709fee01792447402;p=dealii-svn.git We now integrate twice over faces in 3d. Adjust tolerances. git-svn-id: https://svn.dealii.org/trunk@8082 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/tests/base/quadrature_test.cc b/tests/base/quadrature_test.cc index 5b59b12e6d..07d64ce798 100644 --- a/tests/base/quadrature_test.cc +++ b/tests/base/quadrature_test.cc @@ -1,6 +1,6 @@ //---------------------------- quadrature_test.cc --------------------------- -// $Id$ -// Version: $Name$ +// quadrature_test.cc,v 1.18 2003/01/08 17:58:18 wolf Exp +// Version: // // Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 by the deal.II authors // @@ -168,13 +168,13 @@ check_faces (const std::vector*>& quadratures, const bool sub) exact_int = 2 * (sub ? 2:1) / (double) (i+1); break; case 3: - exact_int = 3 * (sub ? 4:1) / (double) (i+1)/(i+1); + exact_int = 3 * (sub ? 8:2) / (double) (i+1)/(i+1); break; } err = std::fabs(quadrature_int-exact_int); } - while (err<5e-15); + while (err<2e-14); // Uncomment here for testing // deallog << " (Int " << quadrature_int << '-' << exact_int << '=' << err << ")"; deallog << " is exact for polynomials of degree " << i-1 << std::endl; diff --git a/tests/results/sparc-sun-solaris2.7+gcc2.95/base/quadrature_test.output b/tests/results/sparc-sun-solaris2.7+gcc2.95/base/quadrature_test.output index ef81214541..d870dac152 100644 --- a/tests/results/sparc-sun-solaris2.7+gcc2.95/base/quadrature_test.output +++ b/tests/results/sparc-sun-solaris2.7+gcc2.95/base/quadrature_test.output @@ -131,4 +131,4 @@ DEAL:3d:subfaces::Quadrature no.14 (t6QGauss1i2) is exact for polynomials of deg DEAL:3d:subfaces::Quadrature no.15 (t6QGauss1i2) is exact for polynomials of degree 9 DEAL:3d:subfaces::Quadrature no.16 (t6QGauss1i2) is exact for polynomials of degree 11 DEAL:3d:subfaces::Quadrature no.17 (t6QGauss1i2) is exact for polynomials of degree 13 -DEAL:3d:subfaces::Quadrature no.18 (t6QGauss1i2) is exact for polynomials of degree 15 +DEAL:3d:subfaces::Quadrature no.18 (t6QGauss1i2) is exact for polynomials of degree 16