From: Wolfgang Bangerth Date: Fri, 19 Aug 2011 04:42:39 +0000 (+0000) Subject: Do like in step-7: put everything into a namespace. X-Git-Tag: v8.0.0~3653 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=0a90bc364d5b1be6b1631777d170f6b450086e8e;p=dealii.git Do like in step-7: put everything into a namespace. git-svn-id: https://svn.dealii.org/trunk@24115 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-10/step-10.cc b/deal.II/examples/step-10/step-10.cc index 4ec0a8b16f..d3395c9d1d 100644 --- a/deal.II/examples/step-10/step-10.cc +++ b/deal.II/examples/step-10/step-10.cc @@ -3,7 +3,7 @@ /* $Id$ */ /* */ -/* Copyright (C) 2001, 2002, 2003, 2004, 2006, 2007 by the deal.II authors */ +/* Copyright (C) 2001, 2002, 2003, 2004, 2006, 2007, 2011 by the deal.II authors */ /* */ /* This file is subject to QPL and may not be distributed */ /* without copyright and license information. Please refer */ @@ -40,618 +40,621 @@ // The last step is as in previous // programs: -using namespace dealii; - - // Now, as we want to compute the - // value of $\pi$, we have to compare to - // somewhat. These are the first few - // digits of $\pi$, which we define - // beforehand for later use. Since we - // would like to compute the - // difference between two numbers - // which are quite accurate, with the - // accuracy of the computed - // approximation to $\pi$ being in the - // range of the number of digits - // which a double variable can hold, - // we rather declare the reference - // value as a long double and - // give it a number of extra digits: -const long double pi = 3.141592653589793238462643; - - - - // Then, the first task will be to - // generate some output. Since this - // program is so small, we do not - // employ object oriented techniques - // in it and do not declare classes - // (although, of course, we use the - // object oriented features of the - // library). Rather, we just pack the - // functionality into separate - // functions. We make these functions - // templates on the number of space - // dimensions to conform to usual - // practice when using deal.II, - // although we will only use them for - // two space dimensions. - // - // The first of these functions just - // generates a triangulation of a - // circle (hyperball) and outputs the - // Qp mapping of its cells for - // different values of p. Then, - // we refine the grid once and do so - // again. -template -void gnuplot_output() +namespace Step10 { - std::cout << "Output of grids into gnuplot files:" << std::endl - << "===================================" << std::endl; - - // So first generate a coarse - // triangulation of the circle and - // associate a suitable boundary - // description to it. Note that the - // default values of the - // HyperBallBoundary constructor - // are a center at the origin and a - // radius equals one. - Triangulation triangulation; - GridGenerator::hyper_ball (triangulation); - static const HyperBallBoundary boundary; - triangulation.set_boundary (0, boundary); - - // Next generate output for this - // grid and for a once refined - // grid. Note that we have hidden - // the mesh refinement in the loop - // header, which might be uncommon - // but nevertheless works. Also it - // is strangely consistent with - // incrementing the loop index - // denoting the refinement level. - for (unsigned int refinement=0; refinement<2; - ++refinement, triangulation.refine_global(1)) - { - std::cout << "Refinement level: " << refinement << std::endl; - - // Then have a string which - // denotes the base part of the - // names of the files into - // which we write the - // output. Note that in the - // parentheses in the - // initializer we do arithmetic - // on characters, which assumes - // that first the characters - // denoting numbers are placed - // consecutively (which is - // probably true for all - // reasonable character sets - // nowadays), but also assumes - // that the increment - // refinement is less than - // ten. This is therefore more - // a quick hack if we know - // exactly the values which the - // increment can assume. A - // better implementation would - // use the - // std::istringstream - // class to generate a name. - std::string filename_base = "ball"; - filename_base += '0'+refinement; - - // Then output the present grid - // for Q1, Q2, and Q3 mappings: - for (unsigned int degree=1; degree<4; ++degree) - { - std::cout << "Degree = " << degree << std::endl; - - // For this, first set up - // an object describing the - // mapping. This is done - // using the MappingQ - // class, which takes as - // argument to the - // constructor the - // polynomial degree which - // it shall use. - const MappingQ mapping (degree); - // We note one interesting - // fact: if you want a - // piecewise linear - // mapping, then you could - // give a value of 1 to - // the - // constructor. However, - // for linear mappings, so - // many things can be - // generated simpler that - // there is another class, - // called MappingQ1 - // which does exactly the - // same is if you gave an - // degree of 1 to the - // MappingQ class, but - // does so significantly - // faster. MappingQ1 is - // also the class that is - // implicitly used - // throughout the library - // in many functions and - // classes if you do not - // specify another mapping - // explicitly. - - - // In degree to actually - // write out the present - // grid with this mapping, - // we set up an object - // which we will use for - // output. We will generate - // Gnuplot output, which - // consists of a set of - // lines describing the - // mapped triangulation. By - // default, only one line - // is drawn for each face - // of the triangulation, - // but since we want to - // explicitely see the - // effect of the mapping, - // we want to have the - // faces in more - // detail. This can be done - // by passing the output - // object a structure which - // contains some flags. In - // the present case, since - // Gnuplot can only draw - // straight lines, we - // output a number of - // additional points on the - // faces so that each face - // is drawn by 30 small - // lines instead of only - // one. This is sufficient - // to give us the - // impression of seeing a - // curved line, rather than - // a set of straight lines. - GridOut grid_out; - GridOutFlags::Gnuplot gnuplot_flags(false, 30); - grid_out.set_flags(gnuplot_flags); - - // Finally, generate a - // filename and a file for - // output using the same - // evil hack as above: - std::string filename = filename_base+"_mapping_q"; - filename += ('0'+degree); - filename += ".dat"; - std::ofstream gnuplot_file (filename.c_str()); - - // Then write out the - // triangulation to this - // file. The last argument - // of the function is a - // pointer to a mapping - // object. This argument - // has a default value, and - // if no value is given a - // simple MappingQ1 - // object is taken, which - // we briefly described - // above. This would then - // result in a piecewise - // linear approximation of - // the true boundary in the - // output. - grid_out.write_gnuplot (triangulation, gnuplot_file, &mapping); - } - std::cout << std::endl; - } -} - - // Now we proceed with the main part - // of the code, the approximation of - // $\pi$. The area of a circle is of - // course given by $\pi r^2$, so - // having a circle of radius 1, the - // area represents just the number - // that is searched for. The - // numerical computation of the area - // is performed by integrating the - // constant function of value 1 over - // the whole computational domain, - // i.e. by computing the areas - // $\int_K 1 dx=\int_{\hat K} 1 - // \ \textrm{det}\ J(\hat x) d\hat x - // \approx \sum_i \textrm{det} - // \ J(\hat x_i)w(\hat x_i)$, where the - // sum extends over all quadrature - // points on all active cells in the - // triangulation, with $w(x_i)$ being - // the weight of quadrature point - // $x_i$. The integrals on each cell - // are approximated by numerical - // quadrature, hence the only - // additional ingredient we need is - // to set up a FEValues object that - // provides the corresponding `JxW' - // values of each cell. (Note that - // `JxW' is meant to abbreviate - // Jacobian determinant times - // weight; since in numerical - // quadrature the two factors always - // occur at the same places, we only - // offer the combined quantity, - // rather than two separate ones.) We - // note that here we won't use the - // FEValues object in its original - // purpose, i.e. for the computation - // of values of basis functions of a - // specific finite element at certain - // quadrature points. Rather, we use - // it only to gain the `JxW' at the - // quadrature points, irrespective of - // the (dummy) finite element we will - // give to the constructor of the - // FEValues object. The actual finite - // element given to the FEValues - // object is not used at all, so we - // could give any. -template -void compute_pi_by_area () -{ - std::cout << "Computation of Pi by the area:" << std::endl - << "==============================" << std::endl; - - // For the numerical quadrature on - // all cells we employ a quadrature - // rule of sufficiently high - // degree. We choose QGauss that - // is of order 8 (4 points), to be sure that - // the errors due to numerical - // quadrature are of higher order - // than the order (maximal 6) that - // will occur due to the order of - // the approximation of the - // boundary, i.e. the order of the - // mappings employed. Note that the - // integrand, the Jacobian - // determinant, is not a polynomial - // function (rather, it is a - // rational one), so we do not use - // Gauss quadrature in order to get - // the exact value of the integral - // as done often in finite element - // computations, but could as well - // have used any quadrature formula - // of like order instead. - const QGauss quadrature(4); - - // Now start by looping over - // polynomial mapping degrees=1..4: - for (unsigned int degree=1; degree<5; ++degree) - { - std::cout << "Degree = " << degree << std::endl; - - // First generate the - // triangulation, the boundary - // and the mapping object as - // already seen. - Triangulation triangulation; - GridGenerator::hyper_ball (triangulation); - - static const HyperBallBoundary boundary; - triangulation.set_boundary (0, boundary); - - const MappingQ mapping (degree); - - // We now create a dummy finite - // element. Here we could - // choose any finite element, - // as we are only interested in - // the `JxW' values provided by - // the FEValues object - // below. Nevertheless, we have - // to provide a finite element - // since in this example we - // abuse the FEValues class a - // little in that we only ask - // it to provide us with the - // weights of certain - // quadrature points, in - // contrast to the usual - // purpose (and name) of the - // FEValues class which is to - // provide the values of finite - // elements at these points. - const FE_Q dummy_fe (1); - - // Likewise, we need to create - // a DoFHandler object. We do - // not actually use it, but it - // will provide us with - // `active_cell_iterators' that - // are needed to reinitialize - // the FEValues object on each - // cell of the triangulation. - DoFHandler dof_handler (triangulation); - - // Now we set up the FEValues - // object, giving the Mapping, - // the dummy finite element and - // the quadrature object to the - // constructor, together with - // the update flags asking for - // the `JxW' values at the - // quadrature points only. This - // tells the FEValues object - // that it needs not compute - // other quantities upon - // calling the reinit - // function, thus saving - // computation time. - // - // The most important - // difference in the - // construction of the FEValues - // object compared to previous - // example programs is that we - // pass a mapping object as - // first argument, which is to - // be used in the computation - // of the mapping from unit to - // real cell. In previous - // examples, this argument was - // omitted, resulting in the - // implicit use of an object of - // type MappingQ1. - FEValues fe_values (mapping, dummy_fe, quadrature, - update_JxW_values); - - // We employ an object of the - // ConvergenceTable class to - // store all important data - // like the approximated values - // for $\pi$ and the error with - // respect to the true value of - // $\pi$. We will also use - // functions provided by the - // ConvergenceTable class to - // compute convergence rates of - // the approximations to $\pi$. - ConvergenceTable table; - - // Now we loop over several - // refinement steps of the - // triangulation. - for (unsigned int refinement=0; refinement<6; - ++refinement, triangulation.refine_global (1)) - { - // In this loop we first - // add the number of active - // cells of the current - // triangulation to the - // table. This function - // automatically creates a - // table column with - // superscription `cells', - // in case this column was - // not created before. - table.add_value("cells", triangulation.n_active_cells()); - - // Then we distribute the - // degrees of freedom for - // the dummy finite - // element. Strictly - // speaking we do not need - // this function call in - // our special case but we - // call it to make the - // DoFHandler happy -- - // otherwise it would throw - // an assertion in the - // FEValues::reinit - // function below. - dof_handler.distribute_dofs (dummy_fe); - - // We define the variable - // area as `long double' - // like we did for the pi - // variable before. - long double area = 0; - - // Now we loop over all - // cells, reinitialize the - // FEValues object for each - // cell, and add up all the - // `JxW' values for this - // cell to `area'... - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - for (; cell!=endc; ++cell) - { - fe_values.reinit (cell); - for (unsigned int i=0; ifabs - // function in the std - // namespace is overloaded on - // its argument types, so there - // exists a version taking - // and returning a long double, - // in contrast to the global - // namespace where only one such - // function is declared (which - // takes and returns a double). - table.add_value("eval.pi", static_cast (area)); - table.add_value("error", static_cast (std::fabs(area-pi))); - }; - - // We want to compute - // the convergence rates of the - // `error' column. Therefore we - // need to omit the other - // columns from the convergence - // rate evaluation before - // calling - // `evaluate_all_convergence_rates' - table.omit_column_from_convergence_rate_evaluation("cells"); - table.omit_column_from_convergence_rate_evaluation("eval.pi"); - table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2); - - // Finally we set the precision - // and scientific mode for - // output of some of the - // quantities... - table.set_precision("eval.pi", 16); - table.set_scientific("error", true); - - // ...and write the whole table - // to std::cout. - table.write_text(std::cout); - - std::cout << std::endl; - }; -} - - - // The following, second function also - // computes an approximation of $\pi$ - // but this time via the perimeter - // $2\pi r$ of the domain instead - // of the area. This function is only - // a variation of the previous - // function. So we will mainly give - // documentation for the differences. -template -void compute_pi_by_perimeter () -{ - std::cout << "Computation of Pi by the perimeter:" << std::endl - << "===================================" << std::endl; - - // We take the same order of - // quadrature but this time a - // `dim-1' dimensional quadrature - // as we will integrate over - // (boundary) lines rather than - // over cells. - const QGauss quadrature(4); - - // We loop over all degrees, create - // the triangulation, the boundary, - // the mapping, the dummy - // finite element and the DoFHandler - // object as seen before. - for (unsigned int degree=1; degree<5; ++degree) - { - std::cout << "Degree = " << degree << std::endl; - Triangulation triangulation; - GridGenerator::hyper_ball (triangulation); - - static const HyperBallBoundary boundary; - triangulation.set_boundary (0, boundary); - - const MappingQ mapping (degree); - const FE_Q fe (1); - - DoFHandler dof_handler (triangulation); - - // Then we create a - // FEFaceValues object instead - // of a FEValues object as in - // the previous - // function. Again, we pass a - // mapping as first argument. - FEFaceValues fe_face_values (mapping, fe, quadrature, - update_JxW_values); - ConvergenceTable table; - - for (unsigned int refinement=0; refinement<6; - ++refinement, triangulation.refine_global (1)) - { - table.add_value("cells", triangulation.n_active_cells()); - - dof_handler.distribute_dofs (fe); - - // Now we run over all - // cells and over all faces - // of each cell. Only the - // contributions of the - // `JxW' values on boundary - // faces are added to the - // long double variable - // `perimeter'. - typename DoFHandler::active_cell_iterator - cell = dof_handler.begin_active(), - endc = dof_handler.end(); - long double perimeter = 0; - for (; cell!=endc; ++cell) - for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) - if (cell->face(face_no)->at_boundary()) - { - // We reinit the - // FEFaceValues - // object with the - // cell iterator - // and the number - // of the face. - fe_face_values.reinit (cell, face_no); - for (unsigned int i=0; i (perimeter/2.)); - table.add_value("error", static_cast (std::fabs(perimeter/2.-pi))); - }; - - // ...and end this function as - // we did in the previous one: - table.omit_column_from_convergence_rate_evaluation("cells"); - table.omit_column_from_convergence_rate_evaluation("eval.pi"); - table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2); - - table.set_precision("eval.pi", 16); - table.set_scientific("error", true); - - table.write_text(std::cout); - - std::cout << std::endl; - }; + using namespace dealii; + + // Now, as we want to compute the + // value of $\pi$, we have to compare to + // somewhat. These are the first few + // digits of $\pi$, which we define + // beforehand for later use. Since we + // would like to compute the + // difference between two numbers + // which are quite accurate, with the + // accuracy of the computed + // approximation to $\pi$ being in the + // range of the number of digits + // which a double variable can hold, + // we rather declare the reference + // value as a long double and + // give it a number of extra digits: + const long double pi = 3.141592653589793238462643; + + + + // Then, the first task will be to + // generate some output. Since this + // program is so small, we do not + // employ object oriented techniques + // in it and do not declare classes + // (although, of course, we use the + // object oriented features of the + // library). Rather, we just pack the + // functionality into separate + // functions. We make these functions + // templates on the number of space + // dimensions to conform to usual + // practice when using deal.II, + // although we will only use them for + // two space dimensions. + // + // The first of these functions just + // generates a triangulation of a + // circle (hyperball) and outputs the + // Qp mapping of its cells for + // different values of p. Then, + // we refine the grid once and do so + // again. + template + void gnuplot_output() + { + std::cout << "Output of grids into gnuplot files:" << std::endl + << "===================================" << std::endl; + + // So first generate a coarse + // triangulation of the circle and + // associate a suitable boundary + // description to it. Note that the + // default values of the + // HyperBallBoundary constructor + // are a center at the origin and a + // radius equals one. + Triangulation triangulation; + GridGenerator::hyper_ball (triangulation); + static const HyperBallBoundary boundary; + triangulation.set_boundary (0, boundary); + + // Next generate output for this + // grid and for a once refined + // grid. Note that we have hidden + // the mesh refinement in the loop + // header, which might be uncommon + // but nevertheless works. Also it + // is strangely consistent with + // incrementing the loop index + // denoting the refinement level. + for (unsigned int refinement=0; refinement<2; + ++refinement, triangulation.refine_global(1)) + { + std::cout << "Refinement level: " << refinement << std::endl; + + // Then have a string which + // denotes the base part of the + // names of the files into + // which we write the + // output. Note that in the + // parentheses in the + // initializer we do arithmetic + // on characters, which assumes + // that first the characters + // denoting numbers are placed + // consecutively (which is + // probably true for all + // reasonable character sets + // nowadays), but also assumes + // that the increment + // refinement is less than + // ten. This is therefore more + // a quick hack if we know + // exactly the values which the + // increment can assume. A + // better implementation would + // use the + // std::istringstream + // class to generate a name. + std::string filename_base = "ball"; + filename_base += '0'+refinement; + + // Then output the present grid + // for Q1, Q2, and Q3 mappings: + for (unsigned int degree=1; degree<4; ++degree) + { + std::cout << "Degree = " << degree << std::endl; + + // For this, first set up + // an object describing the + // mapping. This is done + // using the MappingQ + // class, which takes as + // argument to the + // constructor the + // polynomial degree which + // it shall use. + const MappingQ mapping (degree); + // We note one interesting + // fact: if you want a + // piecewise linear + // mapping, then you could + // give a value of 1 to + // the + // constructor. However, + // for linear mappings, so + // many things can be + // generated simpler that + // there is another class, + // called MappingQ1 + // which does exactly the + // same is if you gave an + // degree of 1 to the + // MappingQ class, but + // does so significantly + // faster. MappingQ1 is + // also the class that is + // implicitly used + // throughout the library + // in many functions and + // classes if you do not + // specify another mapping + // explicitly. + + + // In degree to actually + // write out the present + // grid with this mapping, + // we set up an object + // which we will use for + // output. We will generate + // Gnuplot output, which + // consists of a set of + // lines describing the + // mapped triangulation. By + // default, only one line + // is drawn for each face + // of the triangulation, + // but since we want to + // explicitely see the + // effect of the mapping, + // we want to have the + // faces in more + // detail. This can be done + // by passing the output + // object a structure which + // contains some flags. In + // the present case, since + // Gnuplot can only draw + // straight lines, we + // output a number of + // additional points on the + // faces so that each face + // is drawn by 30 small + // lines instead of only + // one. This is sufficient + // to give us the + // impression of seeing a + // curved line, rather than + // a set of straight lines. + GridOut grid_out; + GridOutFlags::Gnuplot gnuplot_flags(false, 30); + grid_out.set_flags(gnuplot_flags); + + // Finally, generate a + // filename and a file for + // output using the same + // evil hack as above: + std::string filename = filename_base+"_mapping_q"; + filename += ('0'+degree); + filename += ".dat"; + std::ofstream gnuplot_file (filename.c_str()); + + // Then write out the + // triangulation to this + // file. The last argument + // of the function is a + // pointer to a mapping + // object. This argument + // has a default value, and + // if no value is given a + // simple MappingQ1 + // object is taken, which + // we briefly described + // above. This would then + // result in a piecewise + // linear approximation of + // the true boundary in the + // output. + grid_out.write_gnuplot (triangulation, gnuplot_file, &mapping); + } + std::cout << std::endl; + } + } + + // Now we proceed with the main part + // of the code, the approximation of + // $\pi$. The area of a circle is of + // course given by $\pi r^2$, so + // having a circle of radius 1, the + // area represents just the number + // that is searched for. The + // numerical computation of the area + // is performed by integrating the + // constant function of value 1 over + // the whole computational domain, + // i.e. by computing the areas + // $\int_K 1 dx=\int_{\hat K} 1 + // \ \textrm{det}\ J(\hat x) d\hat x + // \approx \sum_i \textrm{det} + // \ J(\hat x_i)w(\hat x_i)$, where the + // sum extends over all quadrature + // points on all active cells in the + // triangulation, with $w(x_i)$ being + // the weight of quadrature point + // $x_i$. The integrals on each cell + // are approximated by numerical + // quadrature, hence the only + // additional ingredient we need is + // to set up a FEValues object that + // provides the corresponding `JxW' + // values of each cell. (Note that + // `JxW' is meant to abbreviate + // Jacobian determinant times + // weight; since in numerical + // quadrature the two factors always + // occur at the same places, we only + // offer the combined quantity, + // rather than two separate ones.) We + // note that here we won't use the + // FEValues object in its original + // purpose, i.e. for the computation + // of values of basis functions of a + // specific finite element at certain + // quadrature points. Rather, we use + // it only to gain the `JxW' at the + // quadrature points, irrespective of + // the (dummy) finite element we will + // give to the constructor of the + // FEValues object. The actual finite + // element given to the FEValues + // object is not used at all, so we + // could give any. + template + void compute_pi_by_area () + { + std::cout << "Computation of Pi by the area:" << std::endl + << "==============================" << std::endl; + + // For the numerical quadrature on + // all cells we employ a quadrature + // rule of sufficiently high + // degree. We choose QGauss that + // is of order 8 (4 points), to be sure that + // the errors due to numerical + // quadrature are of higher order + // than the order (maximal 6) that + // will occur due to the order of + // the approximation of the + // boundary, i.e. the order of the + // mappings employed. Note that the + // integrand, the Jacobian + // determinant, is not a polynomial + // function (rather, it is a + // rational one), so we do not use + // Gauss quadrature in order to get + // the exact value of the integral + // as done often in finite element + // computations, but could as well + // have used any quadrature formula + // of like order instead. + const QGauss quadrature(4); + + // Now start by looping over + // polynomial mapping degrees=1..4: + for (unsigned int degree=1; degree<5; ++degree) + { + std::cout << "Degree = " << degree << std::endl; + + // First generate the + // triangulation, the boundary + // and the mapping object as + // already seen. + Triangulation triangulation; + GridGenerator::hyper_ball (triangulation); + + static const HyperBallBoundary boundary; + triangulation.set_boundary (0, boundary); + + const MappingQ mapping (degree); + + // We now create a dummy finite + // element. Here we could + // choose any finite element, + // as we are only interested in + // the `JxW' values provided by + // the FEValues object + // below. Nevertheless, we have + // to provide a finite element + // since in this example we + // abuse the FEValues class a + // little in that we only ask + // it to provide us with the + // weights of certain + // quadrature points, in + // contrast to the usual + // purpose (and name) of the + // FEValues class which is to + // provide the values of finite + // elements at these points. + const FE_Q dummy_fe (1); + + // Likewise, we need to create + // a DoFHandler object. We do + // not actually use it, but it + // will provide us with + // `active_cell_iterators' that + // are needed to reinitialize + // the FEValues object on each + // cell of the triangulation. + DoFHandler dof_handler (triangulation); + + // Now we set up the FEValues + // object, giving the Mapping, + // the dummy finite element and + // the quadrature object to the + // constructor, together with + // the update flags asking for + // the `JxW' values at the + // quadrature points only. This + // tells the FEValues object + // that it needs not compute + // other quantities upon + // calling the reinit + // function, thus saving + // computation time. + // + // The most important + // difference in the + // construction of the FEValues + // object compared to previous + // example programs is that we + // pass a mapping object as + // first argument, which is to + // be used in the computation + // of the mapping from unit to + // real cell. In previous + // examples, this argument was + // omitted, resulting in the + // implicit use of an object of + // type MappingQ1. + FEValues fe_values (mapping, dummy_fe, quadrature, + update_JxW_values); + + // We employ an object of the + // ConvergenceTable class to + // store all important data + // like the approximated values + // for $\pi$ and the error with + // respect to the true value of + // $\pi$. We will also use + // functions provided by the + // ConvergenceTable class to + // compute convergence rates of + // the approximations to $\pi$. + ConvergenceTable table; + + // Now we loop over several + // refinement steps of the + // triangulation. + for (unsigned int refinement=0; refinement<6; + ++refinement, triangulation.refine_global (1)) + { + // In this loop we first + // add the number of active + // cells of the current + // triangulation to the + // table. This function + // automatically creates a + // table column with + // superscription `cells', + // in case this column was + // not created before. + table.add_value("cells", triangulation.n_active_cells()); + + // Then we distribute the + // degrees of freedom for + // the dummy finite + // element. Strictly + // speaking we do not need + // this function call in + // our special case but we + // call it to make the + // DoFHandler happy -- + // otherwise it would throw + // an assertion in the + // FEValues::reinit + // function below. + dof_handler.distribute_dofs (dummy_fe); + + // We define the variable + // area as `long double' + // like we did for the pi + // variable before. + long double area = 0; + + // Now we loop over all + // cells, reinitialize the + // FEValues object for each + // cell, and add up all the + // `JxW' values for this + // cell to `area'... + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + for (; cell!=endc; ++cell) + { + fe_values.reinit (cell); + for (unsigned int i=0; ifabs + // function in the std + // namespace is overloaded on + // its argument types, so there + // exists a version taking + // and returning a long double, + // in contrast to the global + // namespace where only one such + // function is declared (which + // takes and returns a double). + table.add_value("eval.pi", static_cast (area)); + table.add_value("error", static_cast (std::fabs(area-pi))); + }; + + // We want to compute + // the convergence rates of the + // `error' column. Therefore we + // need to omit the other + // columns from the convergence + // rate evaluation before + // calling + // `evaluate_all_convergence_rates' + table.omit_column_from_convergence_rate_evaluation("cells"); + table.omit_column_from_convergence_rate_evaluation("eval.pi"); + table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2); + + // Finally we set the precision + // and scientific mode for + // output of some of the + // quantities... + table.set_precision("eval.pi", 16); + table.set_scientific("error", true); + + // ...and write the whole table + // to std::cout. + table.write_text(std::cout); + + std::cout << std::endl; + }; + } + + + // The following, second function also + // computes an approximation of $\pi$ + // but this time via the perimeter + // $2\pi r$ of the domain instead + // of the area. This function is only + // a variation of the previous + // function. So we will mainly give + // documentation for the differences. + template + void compute_pi_by_perimeter () + { + std::cout << "Computation of Pi by the perimeter:" << std::endl + << "===================================" << std::endl; + + // We take the same order of + // quadrature but this time a + // `dim-1' dimensional quadrature + // as we will integrate over + // (boundary) lines rather than + // over cells. + const QGauss quadrature(4); + + // We loop over all degrees, create + // the triangulation, the boundary, + // the mapping, the dummy + // finite element and the DoFHandler + // object as seen before. + for (unsigned int degree=1; degree<5; ++degree) + { + std::cout << "Degree = " << degree << std::endl; + Triangulation triangulation; + GridGenerator::hyper_ball (triangulation); + + static const HyperBallBoundary boundary; + triangulation.set_boundary (0, boundary); + + const MappingQ mapping (degree); + const FE_Q fe (1); + + DoFHandler dof_handler (triangulation); + + // Then we create a + // FEFaceValues object instead + // of a FEValues object as in + // the previous + // function. Again, we pass a + // mapping as first argument. + FEFaceValues fe_face_values (mapping, fe, quadrature, + update_JxW_values); + ConvergenceTable table; + + for (unsigned int refinement=0; refinement<6; + ++refinement, triangulation.refine_global (1)) + { + table.add_value("cells", triangulation.n_active_cells()); + + dof_handler.distribute_dofs (fe); + + // Now we run over all + // cells and over all faces + // of each cell. Only the + // contributions of the + // `JxW' values on boundary + // faces are added to the + // long double variable + // `perimeter'. + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + long double perimeter = 0; + for (; cell!=endc; ++cell) + for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) + if (cell->face(face_no)->at_boundary()) + { + // We reinit the + // FEFaceValues + // object with the + // cell iterator + // and the number + // of the face. + fe_face_values.reinit (cell, face_no); + for (unsigned int i=0; i (perimeter/2.)); + table.add_value("error", static_cast (std::fabs(perimeter/2.-pi))); + }; + + // ...and end this function as + // we did in the previous one: + table.omit_column_from_convergence_rate_evaluation("cells"); + table.omit_column_from_convergence_rate_evaluation("eval.pi"); + table.evaluate_all_convergence_rates(ConvergenceTable::reduction_rate_log2); + + table.set_precision("eval.pi", 16); + table.set_scientific("error", true); + + table.write_text(std::cout); + + std::cout << std::endl; + }; + } } // The following main function just // calls the above functions in the // order of their appearance. -int main () +int main () { std::cout.precision (16); - gnuplot_output<2>(); + Step10::gnuplot_output<2>(); + + Step10::compute_pi_by_area<2> (); + Step10::compute_pi_by_perimeter<2> (); - compute_pi_by_area<2> (); - compute_pi_by_perimeter<2> (); - return 0; }