From: Martin Kronbichler Date: Mon, 25 May 2009 11:03:03 +0000 (+0000) Subject: Choose a slightly smaller number for when to use BLAS. Slightly changed the in-code... X-Git-Tag: v8.0.0~7662 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=0adaf3faee4d6a837139942d6fe0494cf456ca4d;p=dealii.git Choose a slightly smaller number for when to use BLAS. Slightly changed the in-code documentation. git-svn-id: https://svn.dealii.org/trunk@18875 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/lac/include/lac/full_matrix.templates.h b/deal.II/lac/include/lac/full_matrix.templates.h index 9efb96c49c..e1f67a705e 100644 --- a/deal.II/lac/include/lac/full_matrix.templates.h +++ b/deal.II/lac/include/lac/full_matrix.templates.h @@ -587,10 +587,10 @@ void FullMatrix::mmult (FullMatrix &dst, Assert (dst.n() == src.n(), ExcDimensionMismatch(dst.n(), src.n())); Assert (dst.m() == m(), ExcDimensionMismatch(m(), dst.m())); - // see if we can use Lapack algorithms + // see if we can use BLAS algorithms // for this and if the type for 'number' // works for us (it is usually not - // efficient to use Lapack for very small + // efficient to use BLAS for very small // matrices): #if defined(HAVE_DGEMM_) && defined (HAVE_SGEMM_) if ((types_are_equal::value @@ -598,15 +598,15 @@ void FullMatrix::mmult (FullMatrix &dst, types_are_equal::value) && types_are_equal::value) - if (this->n_cols() > 25) + if (this->m() > 15) { - // In case we have the LAPACK + // In case we have the BLAS // function gemm detected at - // configure, we use that algorithms + // configure, we use that algorithm // for matrix-matrix multiplication // since it provides better // performance than the deal.II - // native functions (it uses cache + // native function (it uses cache // and register blocking in order to // access local data). // @@ -616,8 +616,8 @@ void FullMatrix::mmult (FullMatrix &dst, // in the next, etc.), whereas the // FullMatrix stores them row-wise. // We ignore that difference, and - // give our row-wise data to LAPACK, - // let LAPACK build the product of + // give our row-wise data to BLAS, + // let BLAS build the product of // transpose matrices, and read the // result as if it were row-wise // again. In other words, we calculate @@ -631,8 +631,9 @@ void FullMatrix::mmult (FullMatrix &dst, const number alpha = 1.; const number beta = (adding == true) ? 1. : 0.; - // Use the LAPACK function getrf for - // calculating the LU factorization. + // Use the BLAS function gemm for + // calculating the matrix-matrix + // product. internal::gemm_switch::gemm(notrans, notrans, &m, &n, &k, &alpha, &src(0,0), &m, this->val, &k, &beta, &dst(0,0), &m); @@ -675,10 +676,10 @@ void FullMatrix::Tmmult (FullMatrix &dst, Assert (src.n() == dst.n(), ExcDimensionMismatch(src.n(), dst.n())); - // see if we can use Lapack algorithms + // see if we can use BLAS algorithms // for this and if the type for 'number' // works for us (it is usually not - // efficient to use Lapack for very small + // efficient to use BLAS for very small // matrices): #if defined(HAVE_DGEMM_) && defined (HAVE_SGEMM_) if ((types_are_equal::value @@ -686,15 +687,15 @@ void FullMatrix::Tmmult (FullMatrix &dst, types_are_equal::value) && types_are_equal::value) - if (this->n_cols() > 25) + if (this->n() > 15) { - // In case we have the LAPACK + // In case we have the BLAS // function gemm detected at - // configure, we use that algorithms + // configure, we use that algorithm // for matrix-matrix multiplication // since it provides better // performance than the deal.II - // native functions (it uses cache + // native function (it uses cache // and register blocking in order to // access local data). // @@ -704,12 +705,12 @@ void FullMatrix::Tmmult (FullMatrix &dst, // in the next, etc.), whereas the // FullMatrix stores them row-wise. // We ignore that difference, and - // give our row-wise data to LAPACK, - // let LAPACK build the product of + // give our row-wise data to BLAS, + // let BLAS build the product of // transpose matrices, and read the // result as if it were row-wise // again. In other words, we calculate - // (B^T A^T)^T, which is AB. + // (B^T A)^T, which is A^T B. const int m = src.n(); const int n = this->n(); @@ -720,8 +721,9 @@ void FullMatrix::Tmmult (FullMatrix &dst, const number alpha = 1.; const number beta = (adding == true) ? 1. : 0.; - // Use the LAPACK function getrf for - // calculating the LU factorization. + // Use the BLAS function gemm for + // calculating the matrix-matrix + // product. internal::gemm_switch::gemm(notrans, trans, &m, &n, &k, &alpha, &src(0,0), &m, this->val, &n, &beta, &dst(0,0), &m);